[Kinetics and mechanisms of hypochlorite oxidation of creatinine] - EHESP - École des hautes études en santé publique Access content directly
Journal Articles Water Research Year : 1988

[Kinetics and mechanisms of hypochlorite oxidation of creatinine]

Cinétiques et mécanismes de la dégradation de la créatinine sous l'action de l'hypochlorite

Abstract

An area of substantial interest in current research on chlorination is the formation, stability and nature of chloramines formed by the interaction of chlorine with nitrogen organic compounds of biological origin in natural water or swimming pool water. It is desirable to be able to predict the lifetime of these harmful compounds under various conditions. The research described here constitutes an effort to gather important baseline data regarding the rate of formation of creatinine chloramines, the stabilities of these products and their identities. Some researchers have studied the effect of the presence of chlorinated creatinine compounds in swimming pool water. Lomas (1967), showed that the presence of urine in water allowed the formation of compounds which reacted with DPD like dichloramine. He reported that the presence of this apparent dichloramine could be due to a chlorine derivative of creatine and creatinine derived from urine. Hamence (1980) confirmed this work and found that urine and particularly creatinine were responsible for the apparent nitrogen trichloride. As a result of this work it was concluded that the DPD-fast titrimetric method of analysis did not determine nitrogen trichloride but other chlorine compounds, particularly those of chlorinated creatinine and creatine. We found it interesting to examine in this study, for a range of hypochlorite creatinine ratios and pHs, the kinetics and mechanisms of formation and decomposition of N-chlorocreatinines. The hypochlorite oxidation of creatinine in aqueous solution has been investigated in the dark. The following of creatinine and chloramines concentrations by the DPD-fast titrimetric method and by their u.v. spectra confirmed Lomas' and Hamence's works. However we observed dichloramine formation (Fig. 4) when the molar ratio of hypochlorite and creatinine was sufficient to decompose all chlorinated creatinine forms. The creatinine determination (HPLC method) suggested that N-chlorocreatinines were formed rapidly at an initial stage. Then they were decomposed by an apparent first order reaction at pH 8. With equimolar (1:1 mmol) amounts of hypochlorite and creatinine at pH 8, it appeared that N-chlorocreatinines were decomposed by hydrolysis to regenerate creatinine. We observed then the formation of creatine, 1-methylhydantoin, chlorocreatinines and NH2Cl (Fig. 3). When the molar ratio was greater, the N-chlorocreatinines decomposed completely to form carbon dioxide, chlorite ion and mineral chloramines (see Table 1). The reaction in the initial stage should be considered as an electrophile substitution followed slowly by hydrolysis when pH remained around 8 (Scheme 2). If the addition of hypochlorite affects the amine group of the molecule, 1-methylhydantoin is produced (Scheme 3) with NH2Cl. Reaction yield was about 10% of initial creatinine. In acid aqueous solution, with a molar ratio of 3, we also obtained trichlorocreatinine. This reaction is due to the various form of creatinine after addition of proton on amino of N-H groups of the molecule. In these conditions N-chlororcreatinines remained stable in aqueous solution for many days. However in the presence of free chlorine, we observed the production of carbon dioxide and mineral chloramines. After 4 days the residual concentration of N-chlorocreatinines was half the initial value. It appears that N-chlorocreatinines formed during the chlorination of natural or swimming pool water were relatively stable, leading to the increase of the combined chlorine level. This stability was a function of the molar ratio of hypochlorite and creatinine, and pH. However, since most of the difference types of water had a pH in the range of 6-9, there would be little effect of pH at ambient temperature.
Le chlore réagit en quelques minutes avec la créatinine pour donner, en fonction du rapport molaire, la mono et la dichlorocréatinine en milieu neutre ou légèrement alcalin (pH = 8). Si le pH est inférieur à 6, la trichlorocréatinine est également obtenue pour R > 2. Ces dérivés sont stables en milieu faiblement acide, mais ils se dégradent lentement (50% après 4 jours) sous l'effet d'un excès de chlore. En milieu neutre, ou à des pH plus élevés, les chlorocréatinines subissent des réactions d'hydrolyse qui conduisent, lorsque R = 1, à la régénération de créatinine et, par ouverture du cycle, à la formation de monochlorocréatine. Celle-ci s'hydrolyse à son tour pour former de la créatine. L'augmentation du rapport molaire R favorise la production des chlorocréatines qui se dégradent lentement en donnant du dioxyde de carbone et des chloramines minérales. L'addition de chlore sur la double liaison carbone azote est également observée, mais, en raison de sa vitesse plus lente que celle des réactions de substitution, la formation de chloro-1-méthylhydantoine reste un fait marginal. Nous avons par ailleurs constaté que les atomes de chlore des chlorocréatinines oxydent l'iodure et sont pris en compte lors de la mesure du chlore résiduel total par la méthode au DPD. L'ensemble de ces résultats montrent que la présence de créatinine dans une eau induira une formation spécifique de chlore combiné relativement stable, même en présence d'un léger excès de chlore libre.

Dates and versions

hal-04061223 , version 1 (06-04-2023)

Identifiers

Cite

Z Alouini, René Seux. [Kinetics and mechanisms of hypochlorite oxidation of creatinine]. Water Research, 1988, 22 (12), pp.1519-1526. ⟨10.1016/0043-1354(88)90164-9⟩. ⟨hal-04061223⟩
74 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More