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What this study adds:
This study demonstrated the utility of a two-stage general-
ized synthetic control method as an alternative to traditional 
approaches for studying the impacts of extreme events such 
as wildfires. We proposed a framework based on this novel 
quasi-experimental method to quantify the heterogeneous health 
effects of the 2018 California wildfires and identify its potential 
drivers. Such a framework can be used to understand spatially 
and temporally compounded health impacts of climate hazards, 
such as heat waves or flooding events. Understanding the driv-
ers of the heterogeneous effects of climate-sensitive exposures is 
crucial to designing adaptation and emergency response strate-
gies that prioritize vulnerable communities.
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Applying a two-stage generalized synthetic 
control approach to quantify the heterogeneous 
health effects of extreme weather events
A 2018 large wildfire in California event as a case study

Noemie Letelliera,b, Maren Halea, Kasem U. Salimc, Yiqun Maa, Francois Rerollea, Lara Schwarza,d, 
Tarik Benmarhniaa,b,*

Abstract: Extreme weather events, including wildfires, are becoming more intense, frequent, and expansive due to climate change, 
thus increasing negative health outcomes. However, such effects can vary across space, time, and population subgroups, requir-
ing methods that can handle multiple exposed units, account for time-varying confounding, and capture heterogeneous treatment 
effects. In this article, we proposed an approach based on staggered generalized synthetic control methods to study heterogeneous 
health effects, using the 2018 California wildfire season as a case study. This study aimed to estimate the effects of the November 
2018 California wildfires, one of the state’s deadliest and most destructive wildfire seasons, on respiratory and circulatory health, 
document heterogeneity in health impacts, and investigate drivers of this heterogeneity. We applied a two-stage generalized synthetic 
control method to compare health outcomes in exposed (from 8 November to 5 December 2018) versus unexposed counties and 
used random-effects meta-regression to evaluate the effect modification of county-level socioeconomic variables on the observed 
health effects of the November 2018 wildfires. We observed an increase in respiratory hospitalizations for most exposed counties 
when compared with unexposed counties, with significant increases in Fresno, San Francisco, San Joaquin, San Mateo, and Santa 
Clara counties. No effect on circulatory hospitalizations was observed. County-level sociodemographic characteristics seem to not 
modulate the effects of wildfire smoke on respiratory hospitalizations. This novel two-stage framework can be applied in broader 
settings to understand spatially and temporally compounded health impacts of climate hazards. We provide codes in R for reproduc-
ibility and replication purposes.

Keywords: Quasi-experimental method; Heterogeneous effect; Environmental justice; Climate hazards; Air pollution

Introduction
Wildfires are becoming increasingly intense, frequent, and 
expansive as a result of climate change, particularly in the west-
ern United States.1–4 One result of this increased wildfire activity 
is an increase in air pollution coming from wildfire smoke, with 
drastic spikes in wildfire-associated PM2.5 concentration (partic-
ulate matter with an aerodynamic diameter ≤2.5 µm).5 In fact, 
this increase in wildfire PM2.5 pollution has effectively reversed 
decades of PM2.5 air quality improvements achieved through 
policy changes across the country, particularly in the western 
states.5,6 This offsetting of public health gains has also been spe-
cifically observed within the state of California.7

Wildfire-associated PM2.5 emissions contribute to negative 
health outcomes, with previous studies documenting the effects 
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on respiratory and cardiovascular health.8–15 Evidence suggests 
that PM2.5 emitted from wildfires may be more harmful to 
human health than equivalent amounts of PM2.5 emitted from 
more traditional sources of pollution (e.g., traffic, agricultural, 
or industrial sources).16–18 In addition, the contribution of wild-
fire smoke PM2.5 emissions to all PM2.5 emissions continues to 
increase,6 intensifying the health impacts of wildfires.

There is also a growing body of evidence that wildfire smoke 
may not impact all population subgroups equally. Several studies, 
using various measures, have found that wildfire smoke-related 
health outcomes differ based on socioeconomic status (SES), 
with worse outcomes for those in lower SES groups.11,19–22 
Differential health outcomes from wildfire events have also been 
found between communities of differing race/ethnicity.7,20,21,23 
For instance, Liu et al20 found that Black Americans face a 
higher risk of respiratory hospitalizations from wildfire events 
than White Americans. In California, communities of color and 
communities of lower SES are at higher risk of being exposed 
to harmful compounding poor air quality events from wildfires 
and heatwaves.24 Age is also an effect modifier of wildfire PM2.5 
health impacts, with the very young and the elderly being most 
at risk.7,8,14,25–27 In this context, adaptation may be more difficult 
for communities and individuals of lower SES due to disparities 
in access to resources and care, health literacy, or simply being 
more likely to live near an exposure source or other sources of 
pollution,20,28,29 hence the heightened vulnerability these com-
munities often face.

Besides heterogeneity across population subgroups, wildfire 
smoke health impacts may also differ spatially and temporally. 
Understanding the drivers of such variability may be useful to 
inform adaptation strategies and also to better understand the 
mechanisms through which wildfire smoke impacts population 
health. In this study, we propose a framework based on a two-
stage generalized synthetic control (GSC) method to quantify 
the heterogeneous health effects of wildfire smoke and identify 
its potential drivers. We use a large wildfire event that took 
place in 2018 in California and impacted multiple counties as 
a case study. The 2018 wildfire season was one of the deadliest 
and most destructive (in terms of area burned) in California’s 
history to date, with several notable fires occurring across the 
state (though focused most strongly on Northern California), 
including the Mendocino Complex Fire, the Camp Fire, and the 
Woolsey Fire.30 The November 2018 Camp Fire caused exten-
sive damage, consuming more than 153,000 acres, resulting in 
the loss of 85 lives, and the destruction of over 18,000 struc-
tures. The total cost of the Camp Fire is estimated at $16.5 
billion.31 Simultaneously, Southern California experienced 
the outbreak of two distinct wildfires known as the Woolsey 
and Hill Fires, causing a wildfire smoke event, which we find 
impacted 27 counties. Using our proposed framework, we 
analyze if respiratory and circulatory health impacts differed 
across the affected areas and attempt to document the drivers 
of such heterogeneity. Such a framework can be extended to 
understanding the temporal variability of wildfire smoke events 
(i.e., multiple events affecting the same location) and can be 
used for other climate hazards such as heat waves or flooding 
events.32–34

We rely on the GSC, a quasi-experimental method (QEM), to 
study the health effects of the 2018 California wildfires. QEMs 
are well suited for studying the impacts of extreme events such 
as wildfires and offer multiple advantages over traditional 
epidemiologic methods35 as the timing of such events can be 
assumed to be independent (exogenous) of the time trends of 
a given health outcome. This allows us to analyze wildfires as 
a type of natural experiment,36 mimicking randomization and 
helping reduce the issue of residual confounding, which can be 
a limitation of more traditional approaches.35 Specifically, GSC 
has several key advantages, as outlined by Xu37 and Sheridan 
et al:35 (1) it allows for counterfactuals for each treated unit 
and allows estimation of heterogeneous treatment effects,  

(2) the synthetic control is generalized to be used in the case 
of multiple treated units or treatment periods, (3) it improves 
efficiency and interpretability, and (4) it allows one to control 
for time-varying observed covariates. GSC methods are very 
useful for studying extreme events such as wildfires, allow-
ing for an alternative approach in situations where it would 
be impossible to use traditional methods.35 In this study, we 
extend the GSC method into a two-stage GSC approach to 
further explore the drivers of heterogeneous effects of extreme 
weather events.

Therefore, the aim of this study is to apply a two-stage GSC 
method to determine the effects of the 2018 California wildfires 
on respiratory and circulatory health, to document the hetero-
geneity in health impacts, and to explore potential drivers of 
this heterogeneity. We investigated the effect of modification of 
socioeconomic and demographic variables on respiratory hospi-
talizations associated with wildfires.

Methods

Data sources

Hospitalization data for the study came from the patient dis-
charge data and emergency department data collected by the 
California Department of Health Care Access and Information. 
We estimated daily counts of respiratory hospitalizations based 
on the International Classification of Diseases, Tenth Revision 
(ICD-10-CM) primary diagnosis codes of diseases of the respi-
ratory system (J00–J99) and of cardiovascular hospitalizations 
based on primary ICD-10 codes of diseases of the circulatory 
system (I00–I99).38

Wildfire smoke PM2.5 data were estimated using an ensemble 
model based on a multiple imputation approach.39 This model 
incorporated data from the US Environmental Protection 
Agency’s Air Quality System monitors, aerosol optical depth 
from NASA satellite measurements, smoke plume observations 
from the NOAA Hazard Mapping System, meteorological vari-
ables from the Gridded Surface Meteorological (gridMET) 
reanalysis product, and other land-use variables from the 
National Land Cover Database. The details for this method-
ology were previously described by Aguilera et al.39 Briefly, 
Aguilera et al applied a suite of machine learning models, 
including gradient boosting, random forest, and deep learning, 
alongside a diverse set of predictors, such as air monitor data, 
aerosol optical depth, land cover, and meteorological condi-
tions, to estimate ZIP code tabulation areas (ZCTA)-specific 
daily PM2.5 concentrations from all sources. This ensemble 
model demonstrated high model prediction capabilities with 
an R² of 0.86. Subsequently, they employed a chained random 
forest algorithm to impute nonwildfire PM2.5 concentrations 
for ZCTA days impacted by smoke plumes. The difference 
between the ensemble model’s estimated daily PM2.5 concen-
trations and the imputed nonwildfire PM2.5 concentrations in 
each ZCTA is defined as wildfire-specific PM2.5. Other meteo-
rological data (including maximum temperature, precipitation, 
relative humidity, shortwave radiation, and wind velocity) were 
estimated from the gridMET ~4-km daily dataset. All meteoro-
logical data were averaged from zip code level daily estimates 
to the county level.

County-level sociodemographics for California counties from 
the 2019 American Community Survey were used for exploring 
differential vulnerability to wildfire smoke impacts. Variables 
considered to be important and included in the analysis were the 
following: population over 55 years and over (%), population 
over 65 years and over (%), population over 85 years and over (%),  
median age, population with a high school degree or higher (%),  
population unemployed (%), median income, population  
female (%), population non-Hispanic White (%), population non- 
Hispanic Black (%), population Asian (%), and population 
Hispanic (%).
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Stage 1: generalized synthetic control analysis by county

The study period lasted 3 months, from 13 September to 5 
December 2018. To quantify the effect of the November 2018 
wildfires on hospitalizations in California, a synthetic control 
approach was used for counties exposed to wildfire smoke 
during this period. For this case study, a county was consid-
ered to be exposed if the average wildfire-PM2.5 was higher 

than 10 µg/m3 during the exposed period, defined as the 4 
weeks following the initial wildfire smoke exposure (i.e., from 
8 November to 5 December 2018). No county had more than 
10 µg/m3 wildfire-PM2.5 in the pre-exposure period, that is, from 
13 September to 7 November 2018, levels were 0.2 µg/m3 on 
average. Therefore, no county was excluded from the analysis 
because of pre-exposure.

In summary, the GSC methodology is a quasi-experimental 
approach that uses the timing of the wildfire smoke exposure 
to quantify its effect.35,40 The trend in the “treated” unit, or 
exposed county, before the wildfire smoke event occurs is used 
to identify a counterfactual of weighted controls that were not 
exposed to wildfire smoke. Controls are decomposed with cal-
endar time, lagged outcomes (in the pre-exposure period), and 
time-varying covariates (including maximum temperature, pre-
cipitation, humidity, shortwave radiation, and wind), and an 
interactive fixed effects model is applied to identify a suitable 
control based on this time series in the pretreatment period.35 
This informs a reweighting approach in which weights for con-
trol units are selected based on these decomposed estimates 
and are used to impute hypothetical trends for the treated unit 
if they had not been treated by predicting the outcome in the 
treated unit during the posttreatment period.35,37 As a result, 
each treated unit (i.e., exposed county) has its own synthetic 
control, which is constructed from a weighted combination of 
nonexposed counties. Any difference between the treated unit 
and its synthetic control after the treatment occurs, the Average 
Treatment Effect among the Treated (ATT), can be attributed to 
the wildfire smoke event. Covariates included in the GSC model 
are maximum temperature (K), precipitation (mm), humidity  
(g/m3), shortwave radiation (W/m2), and wind (m/s).

Regarding our causal identification assumptions,41 we 
ensured that: (1) geographical units eligible for the pool of con-
trol groups had not been exposed to the smoke event; (2) dif-
ferences in the incidence rates of hospital admissions between 

Table 1.

Descriptive statistics (mean) of climate exposures and 
hospitalizations before and after the start of wildfire smoke 
exposure (8 November) in exposed counties

Before wildfire  
(13 September–7 
November 2018)

During wildfire 
(8 November–5 
December 2018)

Exposed 
counties 
(n = 27)

Unexposed 
counties 
(n = 31)

Exposed 
counties 
(n = 27)

Unexposed 
counties 
(n = 31)

Climatic variables
  Mean wildfire smoke 

PM
2.5

 (µg/m3)
0.2 3.0 25.5 3.2

  Mean max temperature (K) 299.0 297.0 289.8 289.0
  Precipitation (mm) 0.4 0.3 4.2 3.9
  Specific humidity (g/m3) 0.0059 0.0055 0.0048 0.0041
  Shortwave radiation 

(W/m2)
196.1 197.3 106.2 118.3

  Wind velocity (m/s) 3.3 3.1 2.9 3.4
Health data
  Mean daily respiratory 

hospitalizations
265 413 388 512

  Mean daily circulatory 
hospitalizations

168 273 173 282

Figure 1. Mean smoke exposure for California zip codes during 2018 wildfires, 8 November–5 December 2018.
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the treated units and the obtained synthetic control groups were 
null or close to zero in the pre-exposure period, and (3) no other 
shocks coincidently took place during the wildfire smoke event 
(i.e., common shock assumption). With these causal identifica-
tion assumptions being met, we used our estimates to infer the 
causal effects of the wildfire smoke event on the outcomes of 
interest. Our main estimand of interest is the ATT.

Stage 2: random-effects meta-regression

Results from the synthetic control analysis for each exposed 
county were extracted for further analysis. The ATT and stan-
dard error for each county were population adjusted for a rate 
of hospitalizations attributable to wildfire smoke per 10,000 
population. Standardized sociodemographic variables were 
estimated by taking the difference in the county-level measure 
from the mean across counties and dividing by the interquartile 
range. A random-effect meta-regression was applied to evalu-
ate the effect modification for each of these variables on the 
observed effect of wildfire smoke.

Codes for reproducibility and replication purposes are avail-
able at the following link: https://github.com/benmarhnia-lab/
Wildfires_social_vulnerability.

Results

Descriptive information

Meteorological exposures and hospitalizations were assessed 
before (13 September–7 November 2018) and during the wild-
fire smoke exposure (8 November–5 December 2018, see details 
in Figure S1; http://links.lww.com/EE/A319) in exposed and 
unexposed counties (Table 1). For hospitalization variables, 
there was a notable increase in mean daily respiratory hospi-
talizations in both exposed (from 265 to 388) and unexposed 
counties (from 413 to 512) after the start of the wildfire. Mean 
daily circulatory hospitalization only slightly increased in both 
exposed (from 168 to 173) and unexposed counties (from 273 
to 282) following the start of the wildfire.

Figure 1 displays the mean smoke exposure for California 
zip codes during the 2018 wildfires, while Figure 2 displays 
the California counties that we considered to be exposed to 
wildfire smoke during the 2018 wildfires for the purposes of 
this study. Counties that were determined to be exposed are: 
Alameda, Butte, Colusa, Contra Costa, Fresno, Glenn, Kings, 
Lake, Marin, Mendocino, Merced, Napa, Placer, Sacramento, 
San Francisco, San Joaquin, San Mateo, Santa Clara, Santa 
Cruz, Solano, Sonoma, Stanislaus, Sutter, Tehama, Tulare, Yolo, 

Figure 2. California counties considered exposed to wildfire smoke during the November 2018 wildfires.
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and Yuba (Table S1; http://links.lww.com/EE/A319). Figure S2; 
http://links.lww.com/EE/A319 shows the average weekly wild-
fire smoke in exposed and unexposed counties, and Figure S3; 
http://links.lww.com/EE/A319 the number of days with wildfire 
smoke above 10 µg/m3 per week in exposed counties, from 13 
September to 5 December 2018.

Sociodemographic mean and standard deviations were calcu-
lated for the wildfire smoke-exposed counties (Table S3; http://
links.lww.com/EE/A319). On average, there was a greater per-
centage of White people (69.7%) than Asian (10.7%), Black 
(3.8%), or Hispanic (30.1%) populations among exposed coun-
ties. Exposed counties had on average, 50.3% women among 
their population. The median exposed income in exposed 
counties was $68,097 and the median age was 38 years old. 
Additionally, there was an unemployment rate of 7.3% among 
the exposed counties. Notably, 28.2% of the exposed counties 
had an average age of 55 years or older, 15.6% had an aver-
age age of 65 years or older, and 1.9% had an average age of 
85 years or older. Around 56.6% of the population in exposed 
counties were, on average, high school graduates or higher.

Main results for stage 1: health effects of wildfire event: 
findings from a generalized synthetic control analysis

Using a reweighting approach to predict the outcome in the 
treated unit during the posttreatment period, we were gener-
ally able to find good matches for synthetic controls (i.e., differ-
ence ~0) in other unexposed California counties. The analysis 
included 27 exposed and 31 unexposed counties. Overall, we 
observed an increase in respiratory hospitalizations for most 
exposed counties when compared with unexposed counties 
(Figure 3); however, only a few counties showed precise effects 

of wildfire smoke. The following exposed counties were found 
to have significant increases in respiratory hospitalizations: 
Fresno (ATT of 193.7; 95% confidence interval [CI]: 78.1, 
309.2), San Francisco (ATT of 97.9; 95% CI: 11.1, 184.7), San 
Joaquin (ATT of 113.1; 95% CI: 16.3, 209.9), San Mateo (ATT 
of 107.9; 95% CI: 5.6, 210.2), and Santa Clara (ATT of 207.9; 
95% CI: 110.6, 305.1) (Figure 4, Figure S4; http://links.lww.
com/EE/A319, and Table S2; http://links.lww.com/EE/A319). 
There was no effect found in circulatory hospitalizations in 
exposed counties when compared with the synthetic controls 
(Figure S5; http://links.lww.com/EE/A319).

Heterogeneity in health impacts: findings from a random-
effect meta-regression

Meta-regression was applied using results from the synthetic 
control analysis for exposed counties to evaluate the effect mod-
ification for each of these county-level socioeconomic variables 
on the observed effect of 2018 wildfires in California on respira-
tory hospitalizations (Figure 5). We found no evidence that the 
county-level sociodemographic variables modified the effects of 
wildfire smoke on respiratory hospitalizations.

Discussion
This study proposed an analytical framework based on a two-
stage GSC method as an alternative to traditional approaches 
for assessing the heterogeneous health effects of extreme events 
such as wildfire and exploring their potential drivers. Using the 
2018 California wildfire season, one of the deadliest and most 
destructive wildfires in California’s history, as a case study, we 

Figure 3. Results of synthetic control analysis of the effect of November 2018 wildfires on respiratory hospitalizations in California for counties exposed to 
wildfire smoke.

http://links.lww.com/EE/A319
http://links.lww.com/EE/A319
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found an increase in respiratory hospitalizations in most coun-
ties that were exposed to wildfire smoke when compared with 
unexposed counties. In particular, Fresno, San Francisco, San 
Joaquin, San Mateo, and Santa Clara counties faced significant 
increases in hospitalizations. No effect of wildfire smoke was 
observed for circulatory-related hospitalizations. We found no 
evidence that sociodemographic characteristics at the county 
level modified the effects of wildfire smoke on respiratory 
hospitalizations.

Understanding the drivers of the heterogeneous effects of 
climate-sensitive exposures, such as wildfire smoke events, is 
important for several reasons. First, documenting these vulner-
abilities, as well as resilience factors, is essential to designing 
adaptation and emergency response strategies that prioritize vul-
nerable communities and reduce the uneven burden they face.42 
For instance, in the event of a wildfire where the main vulnera-
ble population is elderly or of low SES with lower-than-average 
internet accessibility, social media posts would likely not be 
an appropriate or effective method for disseminating alerts.43 
Other vulnerable populations could require communication in 
languages other than English.44,45 Second, understanding the 
heterogeneous impacts of wildfire events is important for plan-
ners to be able to determine how to allocate resources propor-
tionately to expected impacts ahead of or in the aftermath of 
a disaster.46,47 Finally, it also helps us to gain a better under-
standing of the compounded impacts of wildfires with other 
concurring risks. We did not aim at comprehensively investigat-
ing such mechanisms but rather highlight how the approach we 
propose can be used in various settings including for studying 

the compounded impacts of extreme weather events and infec-
tious diseases.

In this study, the health impacts of major California wildfires 
in 2018 are investigated using QEM, more specifically GSC. The 
GSC method is a powerful approach that combines synthetic 
control techniques with interactive fixed-effect models, as intro-
duced by Xu.37 The GSC approach was found to provide accu-
rate estimates across a range of simulation scenarios compared 
with more traditional methods such as difference-in-differences 
and synthetic control methods.48 The GSC method proves espe-
cially advantageous when applied to the assessment of extreme 
weather events35 such as wildfires, as such events often exhibit 
widespread impacts, causing treatment effects to vary signifi-
cantly across different regions, and frequently coincide with 
other environmental exposures. Using GSC to estimate the 
impact of wildfires allows for indirect confounding adjust-
ment and explicit definition of a counterfactual trend and 
does not require detailed individual-level data. Furthermore, 
this approach also accommodates multiple exposed units and 
accounts for both time-varying confounding and heterogeneous 
treatment effects.

We analyzed potential factors that may drive heterogeneous 
effects across affected counties by considering a second stage to 
quantify what modulates the amplitude of the ATT identified in 
the first stage. This approach can be seen as a type of staggered 
intervention similar to the approach that has been proposed 
by Callaway and Sant’Anna49 for staggered difference-in- 
differences. When enough never-treated units (units that are 
never exposed) are available to build synthetic control groups 

Figure 4. ATT and 95% CI by county for the effect of 2018 wildfires on respiratory hospitalizations.
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for each treated unit, such an approach can be implemented. 
In our example, we capitalized on the spatial variability of the 
impacts to evaluate effect modification. Yet, this approach could 
be extended to multiple events or staggered interventions over 
multiple treated units. For example, wildfires affecting the same 
area (or different areas) at different times can be a good oppor-
tunity to understand if (and why) the health impacts of wildfire 
smoke vary over time. In such settings, it is necessary to esti-
mate an ATT for each event and for each exposed county. In the 
second stage (i.e., a random-effect meta-regression), it will be 
therefore necessary to include a fixed effect at the county level to 
consider the dependence of the effect estimates within the same 
area. It is important to note that one potential question of inter-
est can be related to quantifying the differential effects across 
multiple events and in such a situation, a variable capturing the 
order of the wildfire smoke event within an area can be included 
in the meta-regression stage.

In the case study presented in this article, we focused on spa-
tially compounding impacts, but this approach can also be used 
to explore temporally compounding impacts,50 when a succes-
sion of hazards leads to differential impacts. Previous studies 
based on traditional time series modeling have also relied on 
a similar two-stage approach to explore the drivers of the het-
erogeneous effects of environmental exposures across space.51,52 
Our approach is different as we focus on specific events and, 
besides time-fixed effect modifiers, we can also incorporate 

time-varying effect modifiers in the second stage. For example, 
consider multiple wildfire smoke events (or any other extreme 
weather events such as extreme heat events) affecting multi-
ple areas, it would be possible to analyze each wildfire smoke 
event’s features (e.g., quantity of wildfire-PM2.5, temperature, 
concentration of other background pollutants during the event, 
and infectious disease patterns) that may modulate the effects.

Our findings are consistent with prior research, as we 
observed respiratory effects associated with exposure to wildfire 
smoke but found no such association with cardiovascular out-
comes. Previous studies have consistently found positive asso-
ciations between exposure to wildfire smoke and an increase 
in emergency departments or physician visits for respiratory 
outcomes, or an exacerbation of asthma and chronic obstruc-
tive pulmonary disease.10,26,53–55 In contrast, studies focusing on 
the effects of wildfire smoke on cardiovascular health display a 
lack of consistent findings, with the majority of studies not iden-
tifying any association between wildfire smoke and outcomes 
related to cardiovascular diseases.10 A study using generalized 
estimating equations found that the 2003 Southern California 
wildfire storm led to a 17% increase in daily respiratory admis-
sions after the fires compared with the prefire period.8 Another 
study, using the GSC approach, found that the 2007 southern 
California wildfire storm resulted in an 18% increase in respi-
ratory hospitalizations.35 In this case study, we did not identify 
heterogeneous effects of wildfire smoke. Such findings may 

Figure 5. Results of meta-regression of change in effects of wildfire smoke on respiratory hospitalizations for standardized increase in county-level sociodemo-
graphic variables during November 2018 wildfires in California.
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largely be attributed to a lack of statistical power as we assessed 
effect modification based on county-level vulnerability factors 
across 27 exposed counties. Nevertheless, our main goal was 
to illustrate how such a framework can be employed to explore 
such patterns.

Regarding our causal identification assumptions, we ensured 
that: (1) geographical units eligible as potential control groups 
were not exposed to the smoke event; (2) differences in hospi-
tal admission incidence between the treated units and the syn-
thetic control groups were negligible or nonexistent during the 
pre-exposure period, and (3) no other coinciding shocks occurred 
place during the wildfire smoke event. Overall, we believe these 
assumptions are met in this case study. We were generally suc-
cessful in identifying well-matched synthetic controls, with min-
imal differences (close to zero), in other unexposed counties in 
California. Moreover, the common shock assumption should 
be satisfied, ensuring that the observed effects can be attributed 
solely to that wildfire event (and no other shocks). However, 
our classification of counties may have led to misclassification 
of exposure. Counties classified as unexposed may, in reality, 
have been exposed to low levels of wildfire-PM2.5, as no counties 
remained completely unaffected by the massive 2018 wildfire 
event. In addition, it is worth mentioning that some spillover 
effects may be present as some counties may experience a slight 
increase in smoke exposure, which can lead to more hospitaliza-
tions. In parallel, as we used the place of residence for each hos-
pital admission, it is also possible that some misclassifications 
may occur as some individuals may not be necessarily admitted 
in their county of residence.

This study presents other limitations and areas for future 
development. First, we analyzed the effects of wildfire smoke 
on health at the county level in order to have sufficient statis-
tical power. We acknowledge that the county level is not the 
ideal scale for such an analysis as the average treatment effect is 
averaged across relatively large areas. Assessing the spatial vari-
ation in the impact of wildfire smoke exposure within a county 
could lead to more nuanced results. Moreover, we did not con-
sider spatial dependency between geographical units that could 
be leveraged in a Bayesian spatial model to improve the statis-
tical precision of the variance and deal with spatial autocor-
relation. Combining Bayesian Hierarchical models with GSC 
methods in such a framework constitutes a promising area for 
future research. Finally, we did not consider other air pollutants 
emitted by wildfires (e.g., O3) or other factors besides wildfire 
smoke that could lead to increased respiratory hospitalizations. 
For example, we know that extreme weather events such as heat 
waves may co-occur with wildfire events and have synergistic 
health effects,56 yet this was not addressed in the present study, 
which mostly aimed at illustrating an analytical framework.

Conclusion
This study aimed to demonstrate a novel analytical framework, 
based on QEMs, particularly well suited to assessing the health 
impacts of extreme weather events and the drivers of their het-
erogeneous effects. We evaluated the respiratory and circulatory- 
related hospitalizations associated with an extreme wildfire event 
at the county level in California, using a two-stage GSC method. 
We found that the November 2018 wildfires resulted in increased 
respiratory hospitalizations in most of the exposed California 
counties with important variability across counties. We explored 
multiple effect modifiers to explain such variability. This frame-
work can be used in broader settings to understand spatially and 
temporally compounded health impacts of climate hazards.
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