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Abstract: We study a likelihood ratio test for testing the conditional mean of a class of piece-wise
stationary CHARN models. We establish the locally asymptotically normal (LAN) structure of the
family of likelihoods under study. We prove that the test is asymptotically optimal, and we give an
explicit form of its asymptotic local power. We describe an algorithm for detecting change points and
estimating their locations. The estimates are obtained as time indices, maximizing the estimate of the
local power. The simulation study we conduct shows the good performance of our method on the
examples considered. This method is also applied to a set of nancial data.
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1. Introduction

Letd,p,k,n 2 N and k << n. Assume the observations X4, ..
following piece-wise stationary CHARN model (see, e.g., [1])

., X issued from the

Xe=T(ro+g w(t);X 1)+ V(X 1)#.t2 Z, 1)
with
Xe= Y= T(ro+ gjwj(t); Xe 1))+ V(X 1))#, t; 1 t<ty,
j=1,... k+1, @

where for j = 1,...,k (Yij)i2z is a stationary and ergodic process; ro 2 RP, T(ry,.)
and V(.) are real-valued functions with inf,,p4V(x) > 0;the tj,j = O,...,k+ 1, are
potential instants of changes with to = land ty.; = n+ 1 for j = 1,...,k X;j =
(Yij.- Vi d+1,j)>,xtj = Xey e "=0,...,d landfort2[t; ;+d L1t;), X =
(Xty.. ., Xy ge1)”5forj,” = 1,...,k j 6 °, the processes(Y; )12z and (Y;)i2z are mutu-
ally independent; (#),,, is standard white noise with density f. g = g97.,....95,; .
9; 2 RP,j = 1. k+ L w(t) = (i) (0, Ly ey (D0 L 100 (D) Lt p )™ =

(i), Wi (1)) 2 F0,1g % for g = g7,...,07,; ~ and w(t) = (wa(t),... Wi 1(1)”,
g w(t) stands for g w(t) = giwq(t) + + Oke1Wike1(t) 2 RP, and
giw; = (giaWi,...,9ipW;) 2 RP. The class of models (2) is very large. It contains models
such as AR(p), ARCH( p), EXPAR(p), and GEXPAR(p) whose statistical and probability

properties are widely studied in the literature (see, e.g., [ 2] for a study of the ergodicity of

GEXPAR models).
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As noted in [ 3], the assumption that (X )12z and (X, )2z are independent can be

extended to some weak dependence assumption. In this paper, for go 2 RP(*1 and
b 2 RP(k*1) depending on the t;s, we construct a likelihood ratio test for testing

. b
Ho:g = go against Hl()n) 1= 0n = Go+ P @)

A patrticular case of this work is studied in [ 4]. The literature on change points is

extensive and varied. Some basic notions and theory are presented in [5], where one can
nd number of references on the rst works on the subject. Most of the recent papers on
change points are in time series or regression contexts. Various methods and techniques
are used for the study. Ref. [6] proposes a test for parameter changes. The observations
are assumed to follow an exponential distribution. The author presents a derivation using
the method of [ 7]. Ref. [8] studies the problem of changes in the parameters of AR models
and the variance in the white noise using the likelihood ratio statistic. Ref. [ 9] proposes
test statistics for detecting a break in the trend function of a dynamic univariate time
series. The tests are based on the mean and exponential statistics of]0] and the supremum
statistic of [11]. Another method for detecting change points is introduced in [ 12]. The
authors present a multiple-change-point analysis for which the Markov Chain Monte Carlo
(MCMC) sampler plays a fundamental role. They propose an attractive methodology
for the change-point problem in a Bayesian context. The reversible jump algorithm is
presented. Ref. [L3] also studies the problem of detecting change points in the mean of a
signal corrupted by additive noise. The number of change points is estimated by a method
based on a penalized least-square criterion. Ref. [L4] uses the minimum description length
for detecting change points for a non-stationary time series with an application to GARCH
models, stochastic volatility models and generalized state-space models as the parametric
model for the segments. Ref. [15] uses maximum likelihood to estimate the instant of the
change. The authors study the asymptotic distribution of their test by contiguity. Ref. [ 16]
investigates the regression function or its nth derivative in generalized linear models which
may have a change (discontinuity) point at an unknown location. Ref. [ 17] studies change
points in the mean of a sequence of independent normally distributed random vectors.
The asymptotic distribution of the test statistic is studied by using results from [ 18]. Also,
Ref. [19] studies this problem for independent normal means as a multiple testing problem.
The authors consider two stepwise methods, the binary segmentation method of [ 20]
and the maximum residual down method of [ 21]. They prove the consistency of these
methods. Ref. [27] studies the existence of changes in the regression parameters in a linear
model where the regressors and errors are weakly dependent. They study the asymptotic
distribution under the null hypothesis and under contiguous alternatives. In[ 23], the
authors develop a method for detecting and estimating change points in the tail of multiple
time series data. They discuss the effect of the mean and variance's change on the tails. They
focus on the detection of change points in the upper tail of the distribution of the variable of
interest, based on multiple cross-sectional time series. Ref. P4] proposes a procedure based
on the Bayesian information criterion ( BIC) in combination with the binary segmentation
algorithm to look for changes in the mean, autoregressive coef cients, and variance in the
perturbation in piecewise autoregressive processes. The authors explain brie y the Auto-
PARM and Auto-SLEX methods. They present different algorithms useful to the search of
multiple change points. Ref. [ 25] proposes a likelihood ratio scan method for estimating
multiple change points in piecewise stationary processes. Ref. [26] aims to estimate the
instant of change in a regression model. The authors use a sequential Bayesian change-
point algorithm that provides uncertainty bounds on both the number and location of the
change. A class of change-point test statistics is proposed in [27] that utilizes a weighting
and trimming scheme for the cumulative sum (CUSUM) process inspired by Renyi. Using
an asymptotic analysis and simulations, the authors demonstrate that this class of statistics
possesses superior power compared to traditional change-point statistics based on the
CUSUM process, when the change point is near the beginning or end of the sample. The
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authors develop a generalization of these "Renyi” statistics for testing for changes in the
parameters of linear and non-linear regression models, and in the generalized method of
moment estimation.

In this paper, we are interest in weak change detection. A weak change is one with
a too-small magnitude. Such a change may be a harbinger signaling a forthcoming criti-
cal behavior of the phenomenon studied. It can manifest in various domains including
economics and nance, public health, bio-science, engineering, climatology, hydrology,
linguistics, genomics, signal processing and many others.

Classical change detection methods can fail in detecting weak changes. Therefore, it
may be of importance to develop new methods for their detection. In the context of time
series, very few studies have tested no change against local alternatives of weak changes.
Refs. [4,28] study this problem for the case of testing the mean of the model (1). As changes
can happen elsewhere than the mean, it can be interesting to study more general models.
Our main purpose in this paper is to extend these works to the conditional mean of (1).
With this purpose, we proceed with the same techniques. We rst construct a test based
on the likelihood ratio, and we study its null distribution. Next, we establish the LAN
property for the likelihood families under study. From this, we prove the contiguity of  Hg

and Hé”) and use it together with Le Cam's third lemma to nd the asymptotic distribution

of the test under Hé”). Then, we prove the optimality of our test in the case in which
the parameters are known. In the case that the parameters are assumed to be unknown,
we prove the convergence of the estimated version of the central sequence based on the
parameter estimators to its true version. Finally, we prove that the test remains optimal
in the case of unknown parameters. Based on the explicit expression of the power, we
construct an algorithm for detecting change points and estimating their locations. The
simulation study shows the good performance of our method for detecting weak changes
and estimating their locations in the examples considered.

In Section 2, we specify the notation and list some of the main assumptions. In
Section 3, we state the theoretical results in the case thatr o is known and in the case that it
is unknown. The results of this section are used in Section 4 to construct an algorithm for
testing change points and estimating their locations. In Section 5, a simulation experiment
is conducted for the application of our algorithm. Section 6 concludes our work, and the
last section contains the proofs of the results stated in Section 3.

2. Notation and Assumptions
In this section, we specify the notation and list some of the main assumptions needed.

2.1. The Notation
In the sequence,M mn(R) is the space of realm n matricesand M (R) = M nhn(R).
M~ is the transpose of M 2 M pn(R),and M m n IS its Euclidean matrix norm. k.kp
is the Euclidean norm of RP. N
LetU 2 RPK* D we write U= UJ,...,Up,, andforanyi2f1,...k+ 1g,
Ui= U, -..,Ujp

ForM 2M ;. 1)(R), we write

0
Mi1 ... Mige1
M= : . K,
Migr11 - Mpgige1

where fori,j2f1,... k+ 19, M;; 2M p(R).
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Let=: R4
Dg[=] the following matrix:

Dg[=(X)] = Tg,[=(x)]

----- g 1[5 (X)]

R be a differentiable function on RY. For any g 2 RP(k*1 we denote by

> 2 Rp(k+ l),

where g, [= (x)] is the gradient of = with respect to g; at x 2 RY:

i [= ()] =

where for i = 1,...,

to gj .

ﬂg| ﬂg| 2

k+ landj=1,...

|
>

( ) (x) 2 RP,

ﬂgl p

'ﬂﬂg is the partial derivative of = with respect
IYJ

We also denote by Hg[= (x)] the matrix

0

Hg[=(x)] =

9191_ (X)

9k+191_ (X)

where, forevery i 2 1,... k+ 1g,

1
ﬂglgk+ 1 ( )

K2M ppep(R), x2 R

gk+ 1gk+1_ (X)

0 2= 2= 1
ﬂgi,lﬂgj,l(x) m(x)
Mg, = () = : : 2M p(R), x2RY
2_ 2—
Tt ®  Taoga ot
We denote any differentiable function g with derivative ¢by
_ ¢ - z 2
fg= q and I(g) = Rf g(x)g(x)dx.
Foranyt2f1,...,ng,let Fy = s(Xg,...,X;) be the s-algebra generated by X4, ..., X; such

that # is independent of F; ;.

2.2. The Main Assumptions

In this section, we outline the key assumptions needed for our methodology. These
are crucial for establishing our theoretical results. Following their enumeration, we include
a remarléthat articulates theirzsigni cance. So, we assume that

(A1) xf(x)dx= 0and x?f(x)dx = 1.
R R

(A) fisdifferentiable with derivative
(A3) I|m f(x) = I|m¥ f(x) =

f0

I|m f9x) = I|m¥f0(x).

(Ag) f is dlﬁerentlable with derivatlve f ? and is ¢ -Lipschitz where 0 < ¢ < +¥.

z z

fe(x) 3f(x)dx,
(Ag) Foranyj=1,...

(As) max

(A7) Forallj=1,...

fO(x) f(x)dx < ¥.

K+ 1,n;(n) designates the number of observations between the
instants t; and tj 1, such that n;(n)

+¥ andnj(n)/ N a,asntendsto +¥.

,k+ 1,the sequence(Xt),z is stationary and ergodic on [t; 1,t;)

with stationary cumulative distribution function K.
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(Ag) Foranyj=1,...k+1,1 h m pandb 3,
VA
o™ (ro.g0) = 1(f)
n

(A9)  max supg iT(r0.,x)j, Supg Ko T(r 0.9, )IKp(ke 1)
supy JiiHg[T(ro,9,X)]ili pk+ 1y < nN(x), for some positive function n de ned

on RY.
(A) Forj=1,...k+1,ab2f1,23,

! ( 0 go,X) (fo,go,X)dFJ(X) < ¥,

V(x) ﬂgj gj,m

Z p(x)b

RV (x)2
(A11) The density function of the rst d observations on each interval [t; i1,tj), ) =

TazdF(x) <

.,k+ 1, under Hk()n) converges to its density function under Hp.

Remark 1.

Assumptions A)—(As) are regularity properties required for the densftyThey are satis ed
at least by the standard Gaussian density function.

Assumption (As) allows for the application of the ergodic theorem on each sedtyent ;).
This assumption is very usual in the literature.

Assumption (A7) ensures the ergodicy and stationarity of the process on each sggmertt; ).

It holds at least for piece-wise stationary and ergodic AR and ARCH models.
Assumptions Ag)—(A1g) are constraints on the functio and its derivatives. They are

satis ed by usual models as parametric AR, ARCH, TARCH, and EXPAR models with

Gaussian noise.
Assumption (A1) allows for the simpli cation of the forms of the likelihoods.

3. The Theoretical Results
3.1. The Parameters Are Known

We rst study the case where r g and gg are assumed to be known. This will enlighten
the case where they are unknown. We start by establishing a LAN and contiguity results.
We denote by Qn(r g, gg, b) the log-likelihood ratio of Hg against H(n), and we de ne the
sequenceP , by

+1 Y
o o
a a
=1t=t

= i1

=~

Pn(ro,go,b) = Pl*n e 07 N(ro.go. Xt 1)f ¢[#(ro0,90)], (4)

V(Xt 1) !

where
N(ro,go, Xt 1) = w(t) Dg T(ro.do, Xt 1) 2 RP,

andforall g = (gu,...,gk1) 2 RP(KFD),

Xt T(ro.g,%X; 1)

YT . t22Z (5)

Theorem 1 (LAN ). Assume that A;)—(A1o) hold. Then, for any 2 RP(*1D underHy, as
n +¥,

Qn(r 0,90, b) =P n(r 0:90, b)

Pn(ro,do,b)! R (0,h(r0,90,b)),

h(r012gOi b) + Op(l),
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with

k+1

o o h,
h(ro,g0,b)= a & a bj,hbj,mhj(vzm)(rng()),
=1 1 h mp

1 91T

1T
R V200 gy 9 Tg,

h™ (ro,g0) = I(f
iz (Fo.go) = I(f) T9m

(r 0,90, X)dF(x).
Proof. See Appendix A. O

Corollary 1. Assume that A1)—(A10) hold. Then, for anyp 2 RP(k* D) the sequencésHén) :

n 1gandf H(()n) = Hp:n 1gare contiguous. Furthermore, underbﬁ ash +¥,

Pn(ro,go,b)! R (h(ro,g0,b),h(r0,g0,b)).
Proof. See Appendix A. O

For known r g2 RP and go 2 RP(* 1) and for any b 2 RP(k* 1) for testing Ho against
Hén), we base our test on the statistic

Pn(r 0: 90, b)

Tn(ro,go,b) = W,

(6)

where 8, (r o, go, b) is any consistent estimator of J(r o, go, b) = h (ro,go, b).

At the level of signi cance of a 2 (0, 1), we reject Hg whenever Ty(r g,go,b) > Zj,
where Zyisa (1 a)-quantile of the standard Gaussian distribution.

1
In practice, @n(ro,go, b) can be taken as a natural estimator of b? (r o, go, b) with

b (r 0,90, b) = kélaj a bj,hbj,mbj(gm)(ro,go), and for j = 1,...,k+ 1, b; is an esti-
=1 1 h mp
mator of a; = h"”l;g n;j(n)/ nand
(h,m) _ z 1 97
b 5" (ro.g0) = 1(f) rs V2(3) Tlg;n — (o9 o,X) (fo 9o, x)dB(x),

where Pj is the empirical distribution function of the observations with indices in [t 1,t;).
This can be written again as

t 1
(h.m) _ () 1
bz " (ro.go) = — e tal V(X 1) ﬂgjh( 0,90, Xt 1) Tom (ro do, Xt 1).

Theorem 2 (Optimality) . Assume that (A)—(A1o) hold. Then, for any giveb 2 RP(k*+1),

i Under Hg,ash  +¥, Ta(ro,go, b)Y Rl (0,1).
[ii] Under Hén), at the level of signi cance @& 2 [0, 1], the asymptotic power of the test based

Px=1 F(za J(ro.go,b)), @)

wherez, is the(1 a)-quantile of a standard Gaussian distribution with cumulative
distribution functionF .
[iii] The test based oy (r o, 9o, b) is locally asymptotically optimal.
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Proof. See Appendix A. O

3.2. The Parameters Are Unknown

Here, we place ourselves in the framework of Model (1) with rg unknown. We
study the case in which gg is known and the case in which it is unknown. We previously
studied the asymptotic normality of an estimator of r g under Hg and under Ht()"). For any

t=1,....n,r 2 RPandg 2 RP(k*D) dene

Xe T(r+g w).X 1)

Vi 1) (®)

#i(rvgvxt l):

We consider the following additional assumptions:

(B1)  The model is identi able, that is, for g1, g2 2 RP*D g, 6 g, =) T(ro+ g1
w,X) 6 T(ro+g> w,x),x2 R4 w2f0,1g¢1,

(B2) The true parameter r g has a consistent estimatorr , that satis es the Bahadur
representation (see, e.g., [29]), given by

1 g

N3(rn ro)=n 28 U(ro.Xe 1)@#(ro0,90))+ 0p(1), )
t=1

where
. U(X,ro) = (U1(x,rg),...,Up(x,rg))” 2 RP.
+ Forany j=1,...k+1,x2R%9$ Osuchthat

KU(r 0, X)k?* *dF(x) < ¥.
ZRd Z
. Rj@x)j2+$f(x)dx< ¥and  @)f(x)dx= 0.
(Bs) Foranyj2fl,...k+1g, h2f1,...,pg,

max U-(ro,x) gT

1° p Rd Wm(r&g(ﬁx) dFJ(X) < ¥a

(By) Foranyi=1,...,k+ landj= 1,...,p, there exists a ballB(r) of radius r, such that

8 !
< 0T
max_ sup KT T(r,go,X)kp, sup Tr —— (r,go,x)
© r2B(r) r 2B(r) f19i, P
! 9
sup T2 LI (r,go,x) . c(x), for some positive function ¢
r28(r) 19i; o’

de nedon RY,

(Bs) Forj=1,..., k+ 1, =1,2,3anda,b2f0,1,2,3,

z
ORI CILCY
ab

RV (x) i)
Remark 2.
In the literature, one can nd numbers of models with functioh& o,.) satisfying B,)
and Bs).

Assumption B8,) is useful for the estimation afy, while (B,) helps for the study of the
distribution of the test statistic. It has been used beford]inlf is satis ed by least-squares
and likelihood type estimators for some usual models within (1).
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Recall that, forany b 2 RP(k*1) under Hy, the central sequence with the true parameter
r o is denoted by P (r o, go, b) and its estimated version by P (r n, 9o, b).

Proposition 1. Under the assumptions (A—(A1g) and B1)—(B>»), we have
[i] Under Hg:
Pacs roR (0,9),

T (n).
[i] Under H ™

PR rotR (@s),

where

z kt 1 z
u(r o, T
C= @) (0f()dx§ 3 a Din (ro.x) 1

p
a P VORT —(ro,x)dR(x) 2 R

and

z kt1 Z
S= R@(x)f(x)dxé_ 3, U(r 0, X)U” (r ,X)dF(x) 2 M p(R).
=1

Proof. See Appendix A. O

3.2.1. The Parameteryg Is Known

As explained in [ 4], in practice, the case where the parameter gg is known may be
encountered when there is no apparent change, and one wishes to test for possible weak
changes. That is the situation where go = 0. This is what is usually tested in the literature.
Recall that

k+1

h(ro.gob)= 4 a5 @& bjhbjmh ™ (r 0,90)-
=1 1 hmp

Note that, by our assumptions, the following real numbers

LI o.g0.%)
re VZ(x) Tig; - O 9 'ngjm

h™ (ro,g0) = 1(f) (r 0,90, X)dF(x)

are nite. Furthermore, since forany j= 1,...,k+ 1,h;(ro,go) depends onrgandon F,

which itself depends on r ¢ (which is unknown) and on gg, we estimate it by bj(’g’m)(r n, 90),
given by

tj 1

I(f o 1
bj(,g’m)(rnygo)z 1O a il

ni(n) 5, V2(X) Tgjn (rn 9o, X). (10)

1T
( n: 9o, )ﬂg],m
Despite the fact that we consider any consistent estimators of h(rg,go,b) and
J(ro,go) = h3 (r 0,90, b), we will take them here to be, respectively,

k+1
Ba(rn.0o.b)= & B &  bjnbimb{3™ (rn.go)
=1 1 h mp
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and

Ba(r n.90.b) = b2 (¥, o, b),

where forall j = 1,...,k+ 1,k;is an estimator of a; which can be taken to be b; = n;(n)/ n.

Proposition 2. Under the assumptionsi;)—(A1g) and B1)—(Bs), foranyn 0, we have, for
any sequence of positive integefe)ssuch thatd s(n)) Oash +¥,

[i]
Pn(ro.go,b) = Pn(rgny. 9o, b) + 0p(1), (11)

[ii]
Ba(rn,go.b) I I(ro.go,b). 12)
Proof. See Appendix A. O

In order to test Hq against Hgn), for any b 2 RPK*1) we consider the following
statistic:

P n(r ny. 90, b)

Tn(r ¢y, 90, b) = :
n(r s(n): 90, b) Bor 5y G0, D)

Theorem 3 (Optimality) . Assume that A;)—(A10) and B1)—(Bs) hold. Then, for any given
b 2 RP(k*D and for any sequenaén) of positive integers such that/ s(n) Oasn  +¥,
we have the following:

i Under Ho,ash  +¥, Tn(r 4,90, bR (0,2).
[ii] Under Hén), at the level of signi canca 2]0, 1], the asymptotic power of the test based on
the statisticTn(r ny, 9o, b) ISP,k =1 F(za JI(ro,go, b)), wherezaisthe(l a)-

guantile of the standard Gaussian distribution with cumulative distribution functien
iii The test based on the statistiG,(r 4, 9o, b) is locally asymptotically optimal.
s(n)

Proof. See Appendix A. [

3.2.2. The Parametergg Is Unknown

In practice, gg is generally unl?;lown and has to be estimated, as well as g, where,
forany b 2 RP(k*D g, = gg+ b/ n. Many methods can be used to obtain consistent
estimators of these parameters. Let)y, be the maximum likelihood estimator of gg under
Hg and let &, be the maximum likelihood estimator of gn under Hl()”). Then, we easily have
that in probability, asymptotically,

p_
On = Gon+ b/ n.

The above equality allows for the study of the test statistics in the same lines as in the case
where gg is known.
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We need the following assumptions:

(Bg’) Foranym=1,... k+ 1,h=1,...,p, for T9mn(r, g,x) = m (r,g,x),
( 19mn
max SupJTngh(rngX)Jlsupkﬂngm)h(r1gvx)kp(k+l)1
g g

sUp i 5T (r, g, X)jji puer 1y < K(X),
g

for some positive function k de ned on RY,
(B) Forj=1,...k+1,u=1,23andab2f0,1,23,

n*(x)k°(x)

z
d(U) -
ab Rd  VU(X)

dR(x) < ¥.
P _
(BY) n(@on go) = Op(1).
Let s(n) be any sequence of positive integers satisfyingn/ s(n)) O0asn  +¥. For
testing Ho against H[()n), b 2 RP(* 1) we use the test based on the statistic

Pn(r s(n)» go,s(n)v b)

Th(r , ,b) = .
n( s(n) @O,s(n) ) @n(fs(n),@o,s(n),b)

Proposition 3. Assume that A1)—(A1g), (B1)—(Bs) and (B?)—(Bg) hold. Then, for any sequence
s(n) of positive integers satisfying/ s(n)) Oasn  +¥, for any sequence of consistent and
asymptotically normal estimatofsyp ,9, 1 0f go and for anyb 2 RP(k+1) 'we have, undeH,
andash +¥,

Pn(ro,go,0) = Pn(rgny: Bosny, P) + 0p(1).
Proof. See Appendix A. O

Theorem 4 (Optimality) . Assume that A1)—(A1), (B1)—(Bs) and BY)—(BY) hold. Then, for any
givenb 2 RPk*1) we have

i Under Ho,ash  +¥, Tn(r gy B0y D! R (0, 2).

[ii] Under Hé”), at the level of signi canca 2]0, 1], the asymptotic power of the test based on
the statistic
Ta(r sn)s Bosny: P) ISPy =1 F(za JI(ro,go, b)), wherezaisthe(l a)-quantile
of the standard Gaussian distribution with cumulative distribution functibn

[iii] The test based on the statistiG,(r s(n)» Yos(n)» b) is locally asymptotically optimal.

Proof. See Appendix A. [

4. Application to Detection of Change Points and Their Location Estimation

The time series at hand has jumps if the parameters of its distribution change at certain
times. The current test, applied to the model (1) adjusted to this time series, for testing the
null hypothesis of no change against at least one change, is conducted with a gg whose
components are all equal to, say,r 1, the parameter of the stationary distribution on the rst
segment[to,t1) :9o=(ra,ra,...,r1).

The test constructed in this work can do more than testing no change against at least
one change. To understand this, assume changes have been detected in the data by a given
method, and their locations have been estimated. This test can serve as a screening method
for nding possible missing changes by this method. In this situation, one can assume the
changes already detected as well as their locations as known. With this, all the components
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of go will no longer be the same, and some of the t;'s in the model would be considered
known. Thus, our test can be used for testing the null hypothesis of i changes against at
leasti + 1 changes, for some giveni 2 N.

Forany k 1, denote by It’k’t « any estimator of the local power P, of this test at

tX=(ty,...,ty), with the convention that Poto = a,a2 (0,1, the level of signi cance.
Letz 2 (0,.1) and X1, X5, ..., Xm, (M << n), the m rst stationary observations.

Our procedure for detecting changes in the time series X3, X, .. ., X, and estimating
their locations is described in the following algorithm.
Location 1:
(Al): Take anyt between 1 and m+ j, so that there is a large number of
indices before and after t (for example t = [( m+ j)/2]).
Adjust Model (1) to Xj,. .., Xm+j With a potential change located at the time
index t, and apply the testing procedure studied.
IfjB P gof > z,

Putt, = m+ jand go to Location 2 ( rst change location estimated)

Else
Carryout j = j+ 1andgoto (Al).
Location 2:
Consider the next h observations to Xt,: X¢,+1,- -, X¢;+h

Put j = 1 and conduct the following:

(A2): Take anyt betweent, and t; + h+ j so that there is a large number of
indices before and after t.

Adjust Model (1) to Xi,, ..., Xt,+h+j With a potential change located at the
time index t and apply the testing procedure studied.

If 1y P ool > 2,

Putt, = t1+ h+ jand go to Location 3 (second change location estimated)
Else

Carryout j = j+ 1andgoto (A2).
Location i:

Lett; 1 be the change location at step i-1
Put j = 1 and perform

(Ai): Take anyt betweent; ;andt; ;+ h+ jso thatthere is a large number
of indices before and after t.
Adjust Model (1) to Xt ,,..., Xt ;+h+j With a potential change located at
the time index t and apply the testing procedure studied

If jP1e P opof > 2,
Puttj = t; 1+ h+j,i = i+ 1andgoto Locationi (ith change location
estimated)

Else

Carryout j = j+ 1and go to (Ai).

Note that simple Ij’k’t k can be obtained by plugging estimators of the parameters into
the expressions of the local power given in Theorems 2—4.

5. Simulation Experiment

In this section, the theoretical results are applied to simulated data, using the software
R 4.2.0. We rst study the power of the test as a function of the magnitude of the breaks
when these are given. Next, we use the power for estimating the location of the breaks
when they are no more assumed to be xed. The results we present in the sequel are
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obtained for the nominal levels a = 1%, 5%, 10% Almost all the estimators in this section
are computed from 5000 replications. We use the following particular CHARN model:

0 1
bj’3
bj 1 bj 2 Groatdnat BAX
Xt=Tro1t gojit FF'H*' roz2+ goj2+ FFH Xy 1€
F(a+ @X? )i, j=1,...k t22Z, (13)

where n denotes the number of observations, (#): is a standard white noise with a differ-

entiable density f. Here, on[tj 1,t;),ro=(ro1r02"03) 2 R 9o = (9oj,1.90j,2: 90j.3).
bj = (bj1,bj2bj3) 2 R3;r o, o1, G and go are parameters to be speci ed in each particular
model considered.

5.1. Simulation Methodology

Our methodology for conducting the simulation experiment works as follows. For
some given and xed values of ro = (ro1,r02 o3 and number of changes k, for
1 j k+ 1, we consider different values of the triplet b; = ( bj 1, b; », bj 3) corresponding
to the shift in the parameter on each interval [t; 1,t;[, with by = (0,0, 0 (indicating no
changes in the rstinterval). This provides us with n;(n),j = 1,...,k+ 1observations in
the j-th interval. Subsequently, we utilize the model (13) to simulate these observations, to
which our algorithm (see Section 4) is then applied.

5.2. Power Study for Given Break Locations
5.2.1.gg and f Are Known

Now, we treat a particular case of (13). We consider n = 100,n1(n) = 40, ny(n) = 60,
go = O, f is the standard Gaussian density, ¢ = 1, p = 0.02,r91 = 0.8,rg2 = 0.2,
rog = bj3 = 0, T(ro+ gjwj,X) = ro1+ gj1w; +(roz2+ gj2w;)x, and for i = 1,2
9ji = Y0j,i + bj,i/ n with bj,i 2 [ 10,1q, V(X) = 1+ 0.02(2, T/ ﬂgjyl(ro,go,x) =1
and T/ 1gj o(r 0. 90, X) = x. Forj = 1,2 to study the behavior of the power as a function
of magnitudes of the changes, we x one component of each b; and we compute the power
of the test as a function of the other components. The results are plotted on Figure 1, where
one can observe that the power grows quickly to one as the norm of the magnitude grows.

5.2.2.gg and f Are Unknown

As we said before, in practice, gg and f are unknown and must be estimated. While we
estimated gg by the least-squares method, we estimate f by the Parzen—Rosenbatt estimator
(see [30]), de ned by

1 Q x B
R(x= -5 &K :
() nhﬁg‘l hn

x2 R,

where

Xt T(bn+ &n w(t),X; 1)

= V(X 1) !

where b, and @, denote the least-squares estimators ofr g and gg, respectively, h, is the
smoothing parameter, and K the kernel symmetric function having the following properties:

1. g(x) > 0 forany x 2 R (positivity).
2. K(x)dx = 1 (density).
ZR
3. xK(x)dx = 0 (by symmetry).
R

Now, we calculate the power of the test using these estimators. We choose a Gaussian
kernel Kand h, spn %, with s, being the sample standard deviation. We consider a
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sample of n = 1000bservations, ny(n) = 40, ny(n) = 60and we generate the observations
from (13). The results for roq = 0.8,rg2 = 0.2,r93 = 0,0y = land o = 0.02at
the level of signi cance 5% are given in Figure 2. It is clear that the local power of the
test has approximately the same behavior for the standard Gaussian and the standard
Student densities. The results do not change signi cantly for Epanechnikov, uniform
kernel, quadratic kernel, etc.

Power

|".".".'“":
i lm
W I 'n',lm
\ |""4
il
i j
I
i
'M I"|

\ .| .l
\ ".\i

i

_10-10

(a) bl,l = 2and bZ,l =25

Power

(b) b1,2 = land bzyz =35

Figure 1. Power of the test with respect to b in a class of AR(1) models when f is a standard
Gaussian density.
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Power (Student case)

(a) student case

Power (Normal Case)

(b) Normal case

Figure 2. Power of the test with respect to b in a class of AR(1) model when f is the kernel estimated.

5.3. Detection of Change Points and Estimation of Their Locations

In this subsection, we detect change points and we estimate their locations in simulated
data. Ref. [4] studied the case of changes only inr g 1. We start by evaluating the power of
the test in case of no break in the data. Next, we study changes in rg . Finally, we study
changes inr g 1 and r g 2 Simultaneously.
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5.3.1. No Break

Following the algorithm in Section 4, we start by calculating the asymptotic local
power given by (A8) in the case where there is no break, that is, for k= 0. We consider a
sample of n = 2000bservations generated from Model (13), for go = Oand f, a standard
Gaussian density.

Forrp1= 0.5,rp2=ro3= o = Oand gq = 1, the asymptotic local power of our test
with different levels of signi cance is plotted on Figure 3. We can see there that the local
power does not exceed 0.1012when a = 10%and does not exceed0.0507when a = 5%.
Then, for any a = 5%, or 10%, for the thresholds corresponding to z = 0.002and 0.0008
respectively, we keep the null hypothesis and conclude that there is no break in the data.

Mh‘ 'h ”F, Mm

T T T T T
0 50 100 150 200

0.05065

Power
0.05060
1

———

0.05055

0.05050
|

Time

(a) No break (a = 5%)

0.1011
|

0.1010
|

Power
0.1008
1

0.1008
|

0.1007
|

T T T T T
0 50 100 150 200

Time
(b) No break (a= 10%)

Figure 3. No break in the data.

5.3.2. Case of One Single Break

Here, we consider the problem of detecting one single break when it happens jointly in
ropandroo. Fora= 5%,n= 200,rp1= 0.5rp2= 0.2andrg3z= by 3= 0, for different
values of t; and by = (' by 1, b1 2); the estimation of the break location, as well as the root
mean square error (RMSE), is presented in Table 1. One can see from this table that the
estimation is accurate and that the RMSE is large for smaller jj bjj.



Mathematic2024 12, 2092 16 of 40
Table 1. Break location in an AR(1) model with the corresponding RMSE.
b11
bi2
t1
2 1 2 2 3
1 2 1 3 2
80 78 (4.32) 81 (1.41) 82 (4.01) 80 (0.654) 80 (0.34)
100 99 (6.96) 99 (4.67) 102 (3.34) 101 (1.23) 100 (0.54)
120 122 (5.12) 121 (2.32) 119 (2.45) 120 (0.23) 121 (1.23)
140 143 (10.24) 142 (2.22) 141 (2.35) 140 (0.22) 141 (1.12)
160 164 (11.65) 164 (4.43) 162 (2.23) 161 (1.32) 161 (1.12)
185 188 (8.21) 189 (5.32) 190 (6.33) 190 (7.43) 189 (8.23)

5.4. Case of Three Breaks{(k3)

Now, we study the case of three breaks when piece-wise models AR(1) and AR(1)-ARCH(1)
are adjusted to the data. Note that these models are sub-classes of CHARN(1,1) models.

5.4.1. AR(1) Models

We start with AR(1) models. For t = (ty,t,,t3), the data are obtained from (13); for
j=1,2,3r03= bj3=0,¢ =00 = 1, and (#) is a sequence of standard Gaussian white
noise. The number of change points is assumed to be unknown, and we aim to detect them
and estimate their locations using our theoretical results and following our algorithm. For
5000replications, n = 400,ro = (rp1.ro2) =(0.2,0.3,t = (tq,tz,t3) = (90,190,275,
for different values of the magnitude of change b; = (bj4, bj,2)>, j = 1,2,3 and for
the same threshold z = 0.1% the estimations obtained are displayed in Table 2 to-
gether with their associated RMSE (in brackets). These results seem to show that our
method tends to estimate the correct number of changes but overestimates their loca-
tions with a relatively large RMSE when the jumps in the parameters of the AR(1) mod-
els are too small. Again for an AR(1) model, for j = 1,2,3 we x b; = ((3,2),(1,3),
( 1,1))”, and the instants of breakst = ( 90, 190, 275, and we monitor the corresponding
break estimates with respect to the variation in the threshold corresponding to different  z.
For z = 0.07% our method overestimates the number of changes (six instants detected).
For z = 0.1%and 0.15% it estimates the correct number of changes but overestimates their
locations. For z = 0.25% it underestimates the number of changes and overestimates their
locations. The overestimation of the break locations may be explained by the weakness of
the magnitude of changes. If we consider the same study for b = ((5,3),( 1 2),(4,6))”,
we obtain the same results for the number of changes, but with more accurate change
location estimations.

5.4.2. AR(1)-ARCH(1) Models

Here, we consider Model (13) for rg; = 0.2,r92= 0.3 b; = (3, 2)>,b,=(1,1)",
b3 =( 2,47, = 1 ¢ = 0.02and ro3 = bj3 = 0,j = 1,2,3 which leads to an
AR(1)-ARCH(1) model. For n = 350, Table 3 shows the estimation of change locations
corresponding to the same z and different magnitudes of change. We can see that our
method estimates the correct number of changes but overestimates their locations with a
relatively large RMSE.
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Table 2. Break location estimation in a class of AR(1) models for a xed z.

(b1,b2,b3) t =(ty,tats)=( 90,190,275
andz= 0.1
02 .3 2 3 2 31
5 4 5 4 5A (93,193,277) (5.78)
2 3 1
02 3 3 2 31
1 2 1
5 4 5 4 5A (93,194,278) (9.87)
0.5 1 1
02 (32 g8t
5 4 5 4  5A (92,193,277) (8.99)
15 3 1

Table 3. Break location estimation in AR-ARCH models.

(b1, b2, b3) t =(ty,tats)=( 90,190,27%
andz= 0.1

02 3 2 3 2 31

5 4 5 4 5A (93,193,277) (9.43)
2 3 1
02 2,3 2 31
5 4 5 4 5A (93,194,278) (10.64)
0.5 1 1
02 3 (32 g8t
@4 5 4 5 4  BA (92,193,277) (6.10)
15 3 1

5.4.3. Conclusions

Based on the previous simulation results, we can conclude that our method is sensitive
to the choice of z, and is ef cient in detecting weak changes and estimating their locations
in an AR(1)-ARCH(1) model we have considered when the magnitudes of the changes are

not too small.

5.5. Comparison with [27]

In a class of shifted models, Ref. [28] performed a comparison between her method,
which is a different case from ours, and other methods including the one of [ 27]. She

concluded that her method is more ef cient for estimating weak break locations.

In this section, we compare our method to that of [ 27], denoted by SCUSUM, for a
class of more general models. Recalling Model (13), we consider many cases of one single
break corresponding to different instants t;, and we takerg3z= by3= = O0andq; = 1.
Forn = 200,a = 5%,rg; = 0.5rp2= 0.2and different values of b; = (b1, b;2) we
perform 1000 replications, and at each replication, the change location is estimated by

SCUSUM and by our method. Table 4 shows the results obtained.

For most of the 1000 replications, SCUSUM was not able to detect any change. For
that reason, we kept only the cases where it detected a change, and we calculatec the mean
of the change locations estimated. The results are displayed in Table 4, from which it is
obvious that our method is more accurate than SCUSUM for the detection of weak changes

in the parameters of the AR(1) model studied.
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Table 4. Break location estimation obtained by our method and SCUSUM for different instants of
break t , and different magnitudes of change.

b11
b
t1= 80 L2
2 1 2 2 3
1 2 1 3 2
Our method 83 81 82 80 80
SCUSUM 95 99 86 122 99
tl =120
Our method 122 121 121 120 121
SCUSUM 110 114 105 125 122
ty = 185
Our method 189 188 186 186 185
SCUSUM 105 103 122 114 101

5.6. Application to Real Data

Here, we applied our methodology to detecting changes in the log S&P stock price
data obtained from the website https:// nance.yahoo.com/quote/, accessed on 1 May
2024. These daily data cover the period from January 1992 to December 2000 and represent
one of the most closely followed stock market indices worldwide, serving as a signi cant
indicator of the U.S. economy. The raw data exhibit a trend, which shows that the S&P
500 index is non-stationary (see Figure 4). With this, our methodology can not be directly
applied to this series.

Let P, denote the S&P 500 stock price index on dayt, and de ne X; as

The function log being monotonic implies that the change-point locations in (P),
(log(P;)), and (X) are identical. Graphically (refer to Figure 5), X; appears to be approx-
imately piece-wise stationary over a nite number of segments, which aligns with the
requirements for applying our methodology to study changes in the raw data.

Figure 4. Estimated change points in the S&P 500 indices.


https://finance.yahoo.com/quote/
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Figure 5. Estimated change points in the residual series of S&P 500 indices.

To accommodate these characteristics, we adjust the CHARN model Xt = b;/ P n+
q# within each segment [tj,tj+1), where # N (0,1). The Gaussian assumption is
validated by applying the Shapiro—Wilk test.

Then, applying our procedure to this model, we obtained the following break location
dates: 1992-11-11, 1994-03-03, 1995-02-14, 1996-07-11, 1997-07-14, 1998-02-09, 1998-06-22,
1998-11-02, 1999-03-17, and 1999-10-13. The changes occurring in 1992 can be linked to the
damage caused by the hurricane Andrew or by the Europian Monetary System crisis. The
one in 1994 can be associated with the U.S. lifting of the trade embargo on Vietham. Those
in 1995 can be due to the bankruptcy of the Barings bank. That in 1997 may be associated
with the Asian crisis. Those in 1998 may be connected to the rescue organized by the New
York Federal Reverve Bank. Finally, those of 1999 can be associated with the cancellation of
the 1933 Glass—Steagall Act by the so-called Grammi—Leachi—Bliley Act.

6. Conclusions

We generalized the work of [ 4] to a class of more general CHARN models. We studied
weak breaks in the parameters of the function T when the function V and the parameters
r o and gp are known. We established a LAN and contiguity results. We given an explicit
expression of the local power of the test.

Next, we studied the case where r g is unknown and gg is known or unknown. We
estimated these parameters, and proved the convergence of the central sequence based on
the estimated parameters to the one based on the true parameters. In this case, we proved
that the test remains optimal if we replace the parameters with their estimators. From
these results, we used the theoretical power for detecting weak breaks and estimating their
locations in time series through an algorithm that we constructed.

The simulation experiment conducted shows that our method can detect weak breaks
in the parameters of the linear AR(1) and the non-linear AR(1)-ARCH(1) models considered.
Also, the location of the breaks as well as their number can be accurately estimated when
the magnitudes are not too small.

Compared to [ 27], it seems to be more ef cient for estimating weak break locations.
Sometimes, the method in [27] detects breaks in data simulated with no break. This did not
happen with our method when we chose a suitable z. Our method was also applied to a
set of nancial data.
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Appendix A. Proofs
This section provides the proofs of the results stated in the preceding sections.

Appendix A.1. Proof of Theorem 1
For any b 2 RP(k* 1) the log-likelihood ratio of Hg against Hén) is given by

Qn(ro,go0,b) = & flog[f(#(ro,gn))] log[f(#(ro,90))]0- (A1)
t=1

First, we show thatas i +¥, Qu(ro,go, b) decomposes into

Qn(ro,go,b) = Pn Dn+ 0p(1),

where
_ 14 1 . o
Dn %2‘1 mb M(go, Xt 1)bf {[#(r 0,90)]
1 >
mb H(go, Xt 1)bf ¢[#(ro,90)] . (A2)
o1 .
Pn = PRA g NEeX DF (000 (A3)
and

>
« N(@Xt 1) = wiO)Tg,[T(ro,g. Xt Dl Wi 1(D g o[T(r0,9, % 1)] 2 RPKFD,
andfori=1,...,k+ 1,w; 2f0,1g,

0’ 1
M1(g, Xt 1) 0 0
0 Ma(g, X :
* M(g,Xt 1) = . 2(0. % ) g 2 M pu1)(R),
: - 0
0 e 0 Mk+1(9 Xt 1)
where 02 M p(R) is a null matrix and for any i=1,...k+ 1,

Mi(g, X 1) = W2(t)
0

1
T T
X _— X X _— X
'ﬂgi,l(ro’g’ t 1)ﬂgi’1(fo,g, t 1) ﬂg| (fo g, Xt 1) (fo 9. Xt 1)

(Fo 9. %t 1)

19 Ip(rog s Xt 1) (rog Xt 1) ﬂg

2M p(R)1
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0 1
Hl(g,Xt ]_) 0 0
0 Ho(g, X :
* H(9,Xt 1) = % _ 2(0: % 1) g 2 M ) (R),
: ' . 0
0 0 Hk+l(91XI 1)
where, fori=1,... k+ 1,
d<1TZT(rgx ) T e e
ﬂgﬁl 0,97\ 1 ﬂglypﬂghl 0,47\t 1
Hi(g, X 1) = wWA(t) : : 2M p(R).
7?7 7?7
— (ro,9,X ——(ro,0,X
ﬂgi,lﬂgi,p( 00, X%t 1) ﬂgizp( 009, Xt 1)

Applying a rst-order Taylor expansionon log f[#(rg,g)] ina neighborhood of go,
we obtain, for some g lying between gg and gp,

logf f[#(r 0,gn)lg  logf f[#(r0,90)lg= (gn  9o)” (Dgllog(f#(9)9) =g,
+3(@n 90" Hg 10g(ff#(0)0) s=g(an G0

To simplify the study, we calculate all the expressions we need.

« Dy #(ro,9) N(g, Xt 1),

Hg T(ro,9,%¢ 1) »

V(Xt 1)

° Hg #[(roag)

V(X 1)

* Dg log(ff#(ro.g9)g) = mN(g,Xt Df ¢[#(ro 9)]
= Dg #(ro,9) f¢[#(ro09)l,

*  Hg logf fl#(ro,9)lg = M(g, X; 1)f P[#(r 0, 9)]

V12(Xt 1)
+V(Xt11)Hg T(ro,g, Xt 1) f¢[#(ro,9)]
= mM(gvxt 1)f?[#t(r019)]
Hg #(ro,9) f[#(ro,9)].
Then,
091 1F4(r 0, m)1g 10T 1F(r 0, 0)lg = =" 221 i . 5ol
= Wltl)rfwg,xt bt A (r 0. €)]
= Wltl)wg T(ro.@X; 1) bf ([#(ro.8)] .
Now,

b” N(go, Xt 1)f ¢[#(r 0. 90)]

n
ro,go,b) = p= &

mb> M (g, X% 1)bf O#(r o, )]
1

1

b>H (@, X; 1)bf {[#(ro,8)],

where, observing that for any t and forany i 8 j, w;(t)w;(t) = 0,
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0 1
Ml(g,Xt 1) 0 0
0 M X
M(g X, 1) = _ 28X 1) gzmrmﬂxm,
: . . 0
0 0 Mk+1(g,Xt 1)

with 02 M (R) standing for a null matrix and

Mi(g,xt 1):
T 1
1 ] X P y y y ,X
o (ro.e tl) (roe t 1) ‘|T9|(0g Xt 1) glYp(foe t 1)
wi(t) :
1 ,x ) ,X y ,X
1Tglp(og t 1 g Xt 1) ﬂgup(og tl) 9 5 (rog t 1)
2M p(R),
0 1
Hl(g,Xt 1) 0 0
Ha(g, X ;
H@xto—% A8.X0 D) §2Mpmnm%
. . 0
0 Hyr1(8 %Xt 1)
with
<7
X e —— — , 8, X
2 (fo e, Xt 1) ."giyp.”giyl(fo e, Xt 1)
Hi(g. X 1) = wi(t) : 2M p(R).
o —(ro.8 X% 1) 1]Z—T(r e, Xt 1)
ﬂgl,lﬂglp O AL L ﬂgﬁp 0t
Let
C@X )= LA e b M(eX Dbt (o 6]
g t 1) — 2 te.lVZ(Xt 1) g! t 1 f Olg
+ 28 L b HgX 1) b [H(ro.e)]
2 t::I-V()(t 1) g! t 1 f Oig .
Using (A3z), we have Eff¢[#(ro,9)lg = 0, Eff?[#t(ro,g)]g = I(f) and

Efj f ¢[#(ro,9)]ljg < ¥. Now, using ( A;) and the ergodic theorem, from a simple cal-
culation, we can prove that

jc(@.X 1) c(goXe il ", 0

It results from above that
Qn(r01901 b): Pn Dn+ OP(l)a

where D and P, are de ned by (A2) and (A3), respectively.
Now, we study of the asymptotic behavior of Dy under Hg.
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By the piecewise stationarity and ergodicity, forany j = 1,...,k+ 1, we can write,

almost surely,

1 k1
. 1% ° o (hm) _ h(ro,go,b)

hlml¥ Dn = 2 ?1 1 ham pbj’hbjmhj'2 (ro.go0) = 2 '
with

(ham) 21

heo™ (ro,90) = I(f , r 0, 9o, X)dF(X).

2 (ro.9o) = I(f) dV2()ﬂg (ro.90 )ﬂg,m(ogo )dF(x)
Thus, we can write

h(ro,99,b
Qn=Pn %"'OP(:L)-

Now, we prove that under Hy,

n II?\l (Ovh(r01901 b))

We consider the sequence

1 J
Qn,j:pia

= b” N(go, Xt 1)f ¢[#(ro.g0)l, j=1,....n,
t=1

1t
V(Xt 1)
and we de neforevery t=1,...,n,

1

Ynt = P=57o——

nV(Xt " b” N(go, Xt 1)f ¢[#(r 0. 90)]-

We use Corollary 3.1 of [31] to study the asymptotic behavior of Q.

Itis easy to prove that (Qnj,Fj),j = 1,...,nis a martingale sequence.

Using the fact that # is independent of Fy ; for t = 1,...,n and using the ergodic
theorem, we can show that, almost surely,

k+1
h“m a. E(Ynt Fi )= a g a bj nbj, mh
t=1 =1L 1 h mp

< ¥,

™ (r0,d0) = h(r 0,90, b)

which shows that the rst condition of Corollary 3.1 of [ 31] is veri ed. It remains to check
the Linderberg condition. Let e > 0; by the Hblder inequality, using Markov inequality
and the ergodic theorem, we can write thatas i ¥,

E(YAtLy,j>e Ft )1*° 0.
1

T Qo5

Then, the conditions of Corollary 3.1 of [ 31] are completely veri ed, so that under Hg,
we have

Pn(ro.90.6) 'N  (0,h(ro,g0,b)). (%)
Consequently, under Hg, we have

h(r 0,90, b)
2

Qn(r 0,90, b) I'N h(ro,do,b) (A5)
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Collecting the above results, the LAN property is established with the central sequence
Pn(ro,go. b).
Appendix A.2. Proof of Corollary 1

Forany b 2 RP(* 1) from Theorem 1, under Hg, asn  +¥,

Pn(ro.go,b) I'N  (0,h(r0,do, b)).

It results that, under Hg, asn  +¥,

Qn(ro0,go,b) !'N

h(rg,90,b
%,h(foygo,b) :

Then, it is easy to see that under Hg, asH +¥,
00 1 1

Pn(go,b) @O 0 A h(ro,go b) S1,2
Qn(ro,go, b) N h(ro,izgo,b) ’ S2,1 h(r 0,90, b)

where s; 2= s, = | im_ CouPn,Qn) = , lim_[E(PrQr)  E(Pn)E(Qn)]
SinceE(P ) = O0and
h i

im E QnPn =, lim E P2 E P.Dn = h(rg,go,b),

h h

under Hg, we have
00 1 1

Pn(ro, 9o, b) @@ 0 A h(ro.go.,b) h(ro,go.b) A
S N Mr0.90.0)™ h(ro,g0b) hiro.gob) "~

Using [32] or [ 33], we obtain that the sequencesf Hén) :n  lgandf H(()n) = Hp:n 1g

are contiguous, and that under Hé”), asn  +¥,

Pn(ro.g0,b)! R (h(ro,g0,b),h(r 0,0, b)).

Appendix A.3. Proof of Theorem 2
From Theorem 1 and Corollary 1, we can conclude immediately that, under Hg, as
nhoo+¥, 00 1 1
0
Pn(ro,go,b) B, @@ A h(ro.go,b) h(ro.go.b) A
! h , . A7
Qn w h(ro,90.b) h(ro,go,b) (A7)

Part [i] is a direct consequence of Theorem 2 and is brie y explained in the proof of
Corollary 1.

As explained there, the sequences of hypotheses are contiguous, and underHén), as
N +¥, we have

Pn(ro.90,b) I'N  (h(r 0,00, b), h(r 0,0, b)).

By (A6) and the Le Cam's third lemma (Proposition 4.2 in [32]), under HE)”), asn  +¥,

Pn(rO!QOlb) '[N (h(rO!gO! b)vh(roag@b))'
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We recall that, under Hg, asn +¥,

h)n(rOIQOIb) | J(rOIgO! b),

P
where J(ro,do,b) = h(ro,go, b).
This convergence remains true under H,g”) by contiguity. From Theorem 2, it can be
seenthat,asn +¥ , under Hy,

Ta(f0,90,b) N (0,2).

Thus, by the Le Cam's third lemma, we can conclude that under Hé”), asn  +¥,

Pn(rO!QOIb) ||?\|
Ba(r 0,90, b)

Indeed, for n 1, we can write

Pn(ro.do,b) _ Pn(ro,go,b)  J(ro.go.b)
‘bn(r()vgo’ b) J(ro’go’b) bn(rOaQO:b).

(J(r 0,90, b), 1).

From which it results that, under Hk()”) and asn +¥,

Pn(ro.go.b) g (J(r 0,90, b), 1).

J(ro.9o,b)
For parts [ii] and [iii], to calculate the asymptotic power of our test statistic, we calculate
. . . . . P L 1
the asymptotic cumulative distribution of Pn(ro.9o.b) under Hé”). We have
‘lpn(r 0,90, b)
lim Pn(rorgoa b) > 7, Hl(gn) = lim Pn(rorgoa b) > 7, Hl()n)
h™+¥ " B.(ro,go,b) h ™ +¥ " J(ro,gob)
= Pk,t ky

where F is the cumulative distribution function of a standard Gaussian law with  z; its
(1 a)-quantile.
By Section 4.4.3 of B3], the test based onTy(r g, 9o, b) is locally asymptotically optimal.

Appendix A.4. Proof of Proposition 1
Appendix A.4.1. Proof of [i]
From the Bahadur representation (9), as in [34,35], we consider the following sequence:

J
Roj=n 28 U(ro, X 1)@#4(ro.go)l,j=1,....n.
t=1

and

1 J S
U Ry = FFH a yi(u) 2 R, where yi(u)= u”U(ro,X¢ 1) @#(ro,90)l.
t=1

u?2 RP.

Itis easy to see thatu” Ry, is centered for every j = 1,...,n. SinceEf@#(r 0,90)]g = 0
forany t 2 N, from a simple calculation, we prove that f(u”R,;,F;),j = 1,...,ngis a
martingale sequence.
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We check now the rst condition of Corollary 3.1 of [ 31]. Since# is independent of F; 4
fort = 1,...,n, we can write

é’] h 1 |2

aE n2y(u F¢a

t=1

= a n lE u> U(rOIXt 1)@#%("01g0)] Ft 1
t=1
+1 ti h

Kln(n) 1 S i, n 0
= U(r o, X E , ,
. nonj(n) t:?j ) u” U(ro, X 1) @[#(r 0.90)]

|
I Qo

i
By the assumptions (B5), (Bs) and the ergodic theorem, for j = 1,... ,k+ 1, we can write

0 Z h ip

1 uoh i, N as
—~ & UuU(roX 1) E @H#(ro.go)] ™ u”U(ro,x) dR(x)
n;(n) t=t) 4 Rd
Z
F{@3(X)f(x)dx< ¥,
Then,
3 Ef[p- 2F g * —Z@fd
& EMPLy (P Fuag | *, 5= @R1(0ax

k+1 z h |2
a g u”U(ro,x) dF(x).
= Rd

Finally, we check the Linderberg condition, that is, the second condition of Corollary 3.1
of [31]. In this purpose, we prove that, as n!  + ¥,
8 9

n < h |2 as
aE niZy@u 1 , Ft 1. 70
: n 2yi(u) >e )

NI

8 9
n <h 1 |2 =
AE n Iy 1 Ft 1
t=1 n zyt(u)>e !
8 9
o, hy 's 1< -
aE3s nz2y(u Fyq E3 1 Ft 1.
a D Tn By e N
1 1 3
oo, hy i3 E3 n 2y(u) >eF¢
aE3 n2y(u) Fiq B
t=1 e

(0]

1 k;-l n.(n) 1 (t)i n. .
! a ku”U(ro, X 1)K’E j@#(ro.90)lj* -
t=t;

e ﬁj:l n nj(n)

1

By the piece-wise stationarity and the ergodic theorem, for j = 1,...,k+ 1, we obtain
almost surely that
0 t 1
1 Kinn) o 1 n 3°
l — & @ 3 ku” X, 1)k3E 3 A =
plim, P= al nng(n) t=?j 1 u”U(ro, Xt 1) 1@#(r 0,90)1j 0

j:
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Then, using Corollary 3.1 of [31], we conclude that, under Hg, we have

P Ren ror R (007 su).

which implies that, under Hpandasn  +¥,

Pacs ror'R (0.8)

where S is the covariance matrix de ned as

A k+ VA
S= . @ (x) f(x)dx élaj o U(r o, X)U” (r 0, X)dF(x) 2 M p(R).
j=1

Appendix A.4.2. Proof of [ii]
We recall that under Hg, asn  +¥,

pﬁ(rn ro) PR (0,9),

h(ro,go,b
Qn(rOng= b)l RI %1h(r01g01 b) ’
where
kel o (h,m)
h(ro.go.b)= a a a  bjnbjmhy, "(ro.go),
=1 1 hmp
with
(hm) 21 9qT qT
h.’mr, = |I(f ———(r9,90,X) =——(r 0,90, X)dF (x).
iz (Fo.go) = I(f) Re V2(X) ﬂgj,h( 0,90 )ﬂgj,m( 0,90, X)dF(x)

We consider the sequenceQy = P n(rn rg). By Le Cam's third lemma, under Hg, as
n +¥,
00 1 1

0
Qn @@ A A
Qn(ro, 9o, b) R h(ro,izgo,b) X2

where

X = lim Var(Qn) Cov(Qn,Qn)
h " +¥ Cov(Qn,Qn) Var(Qn) ’

h(r 0,90, b
CoUQn, Qn(r 0,50,b) = Cov Qn,Pr(ro,go,b) T 2900)
= P= & E 2 bN(go. X 1) ([ 0.00)
nd V(% 1) 9o, A )T ¢ 0,90
1 N n 0
E(Qn)E mb N(g0, Xt 1) E f¢[#(ro,90)]
Since Eff¢[#(ro,90)]g = 0O, hlirrl¥ E(Qn) = 0, # is independent of

Fi 1, Ef@#(r 0,90)]1g = 0, and using the stationarity and the ergodic theorem, we can
easily see that

Cov(Qn,Qn(ro,9o0,b)! C

n' +¥
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where

Z n 9] Z

[ o U(I’O,X) T[T
C= f f(x)d Wi b; —(ro,x)dF(x).
L@ (0T aw; & by, SyEsR g (1o, )R ()

Then, under Hg, we have
00 1 1

0 >
Qn | @@ A S C A
On(ro.gob) ‘N Lj“” ' C h(ro.go.b)

From this result and Le Cam's third lemma, under Hgn), asntendsto + ¥ , we have
p_
n(rn ro)= QR (C5).

Appendix A.5. Proof of Proposition 2
Appendix A.5.1. Proof of [i]

We prove the convergence of the central sequence (4) to its estimated version in order
to verify that the test still be optimal when we replace the parameter by its estimator. For
anyr 2 RPand g,b 2 RP(K* D) we de ne

n
g b

Qn(r,g,b)= g log f # r,g+ P logf f[#(r,g)lg+ op(1).
t=1

Then the log-likelihood ratio of Hg against Hgn) is Q(r 9,90, b). For e, lying between r
and r o, we write a second-order Taylor expansion of P ,(r g, gg, b) around r , and obtain

Pn(ro,do.b) = Pn(rn.go,b)+(ro rn)” TrPn(rn,go.b) (A9)

1
+ Q(ro rn)” TP n(€n 9o, b)(ro  rn).
We wish to prove that, under Hg,asn  +¥,
(ro )" 1 Pn(rn.go b) = op(1) (A10)

2o T BPa(endob)(ro 1n) = on(). (A1)

In order to simplify the notations, let T9mh = T/ g p.

1
p*ﬁﬂrzp n(®n, o, b)

10 1 k;—l op 5
=54a VX 1) a a bmnTr(T9m0)(en, go, b)f ¢[#(ken, 9o)]
t=1 m=1h=1
n V2(X, 4) m e ) ) e y e ,
”Slvz(xt 1) n?'=1ha='1 mhr n: 9o D)1y T(en, X 1) f £[# (en, 9o
n k+1 P
E é ; é é_ b thm,h(en Jo b)ﬂZT(En X4 l)fo[#t(en 90)]
ntzlvz(Xt 1) m:1h:1 m, 1 1 r 1] f y
1g 1 k¥l P b p TImn( b)Y T(en, X; 1)1 T(En, X¢ 1)
o vV/3(X. .) mh(e ’ [ 5] , B s
nt§1V3(Xt 1) rglrgl mh n» 90, 0)Wr T(8n, Xt 1)Tr T(8n, Xt 1

f 9% (en, 90)]
= Dl,n(enaQO:b)+ D2,n(ena90:b)+ D3,n(en!g()1b)+ D4,n(en!g()1b)-
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By a multiple use of a Taylor expansion, by the assumptions ( Bs), (Ag), by the ergodic
theorem, from a simple calculation, we prove that, for i = 1,...,4, jjjD;n(€n, 9o, b)jjj p
is bounded. b

Thus,asn +¥, 1/ n jjj12P n(en, go, b)jjj p tends in probability to a nite posi-
tive real number, denoted by b.
Recall from (A11) that,asn  +¥ , we have

1
é(fo l'n)>ﬂr2pn(en1901b)("o In)
p

— 1
n(ro rn) D pﬁﬂgpn(en,gOab) pkro rnkp

pﬁ(ro rn) IDkrO rnk, b

NI

Since under Hg, asn + ¥ , we have
Praco )R (0,9),
it results that
30 1) FPa(engob)(ro ra)= on(1). (A12)
From (A12), we can write
Pn(ro.go,b) = Pn(rn,go,b)+(ro rn)” TrPn(rn go.b)+ op(1). (A13)

Now, we prove that
(ro rn)” T Pn(rn,gob)= op(1).

Adding and subtracting appropriate terms,as 1 +¥ , we can write

Pn(ro.gob)

Pn(rn,go,b)+(ro rn+rgp rs(n))>ﬂrpn(rn:901b)+ op(1)
Pn(rngo,b)+(ro Tem) TrPn(rngo,b)+(rgn rn)” TrPn(rn,go,b)
op(1),

+

where fs(n)g, 1 stands for a sequence of positive integers such that n/ s(n) ! 0
asn  +¥.
Observing that,asn = +¥,
p q r -
- > > —
N(ro rgm)” = s(N(ro rgm) O op(1),

it is easy to see that,
> _ P > ok
(ro rgn) TPn(rn,gob)="n(ro rgm) FFﬁﬂrPn(rn,go,b)-

Then, it suf ces to show that Ty P n(r n, o, b)/ P n converges in probability to a random
vector. For this, we can write the following decomposition:

1
p*ﬁﬂr Pn(rn,go0,b)

10 1 k1P .
- - 8 2 3 p 6 (TIMN)(r 1, 9o, X f ro,
nt§1V(Xt 1)&12‘1 mnflr (T9m7)(rn, 9o, Xe 1)F +[#(rn, 9o)]
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1 on 1 k;'l op 0
ﬁglmﬁlhaz.lbm,h-rgm’h(r n 90, Xt 1) Tr T(rn, 9o, Xt 1) F£[#(r n, 90)]
= f 1,n(rn1901b)+ f 2,n(rnago, b).

Using the assumptions (B4) and (As), and the ergodic theorem, since # is independent of
F. 1, the study of the asymptotic behavior of f 1,(rn,go,b) andf 2,(r n,go, b) shows that,
asn  +¥,

f 1n(rn,go, b} P 02 RP.
Thus, kf 2n(r n, 9o, b)k,, tends in probability to a nite positive real number. Consequently,

1
pﬁﬂr Pn(rnnga b) kf 1,n(rn:90:b)kp+ kf 2,n(rn190v b)kp < ¥ .
p

It results that
(ro Tgny)” TrPn(rn,go,b) = op(2).
Hence,
Pn(ro.go.b) = Pn(rn.go.b)+(remy 1n)” MrPn(rn.go.b)+ op(). (A14)

In order to treat the above equation (A14), we need the following lemma.

Lemma Al. Assume thatB;) holds. Leff s(n)g, 1 be a sequence of positive integers such that
n/ s(n) tendsto0asd  +¥. Forgg, b 2 RP(k+1) ¢ s(n) Is asymptotically in the tangent space
Ty to the curve oP (r,g,b) atr , de ned as follows:

n 0o
Tn= 22 Rp/ Pn(Z,go,b)= Pn(rn,go,b)+(z rn)>ﬂrpn(rn,g0,b) .

Proof. Writing a second-order Taylor expansion of P (r s(n)» 90, b) in a neighborhood of
rn, for some ey, lying between r g,y and r , we obtain

Pn(rs(n)1901 b) = Pn(r n1901 b) +( rS(n) r n)>ﬂr Pn(r n,QOy b)

1
* (Mg rn)” T2P n(Bgny. 90, 0)(F gny  Tn)-

To prove that,asn +¥,r s(n) belongs to Ty, it suf ces to show that (r sn T n)”> ﬂ?P n
(Bsn)» 90, 0)(rgny ) = 0p(1).
To nd the asymptotic distribution of n(r sn) n), we add and substract appropri-
ate terms and we obtain
r
p_— q n p_
N(rgmy rn)= s(N)(rgn ro) 0l + n(ro rn)

= op(1)+ "R(ro rn).

Then, asymptotically, P n(rgny rn) hasthe same distribution as P n(rg rn). Thismeans
that = n(rgn) rn) converges in distribution to a normal law.
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Now, to prove that (r ) rn)” 2P (Bs(n)» 90, D)(rgny  n) = 0p(1), itsufcesto
show that the sequence 2P n(Bg(n), 9o, b)/ n converges in probability to a random vector.
Recall that

1
FFﬁﬂ?Pn(Bs(n),go, b)
= Dyn(Bg(nys 9o, 0) + D2n(Es(n), 9o, b) + D3n(By(n), 9o, b) + Dan(Bgn), 9o, b),

where fs(n)g, ; stands for a sequence of positive integers such thatn/ s(n)! 0 as
N +¥, rynisgivenby (By), and ey, lies betweenr g,y and ro.

We have, asn +¥,Kkeg) rok K rgp 1ok 0, then,
Es(n) o= Op(l).

For some ey, lying between r , and r o, we proved previously that jjj 12P n(en, 9o, b)jjj p/ P n
converges in probability, as 1 +¥ ,toa nite p&sitive number. By following the same
lines, we can prove that jjj 1P n(Bg(n), 9o, b)jijp/ ~ N converges in probability to a positive
nite number, where ey, lies betweenr g,y and r o. Consequently,

(Fsmy  n)” T2Pn(egn), 90, D) (T sy n) = op(1).
O

It results from Lemma Al that, as n! +¥, 1 g belongs to the tangent spaceTh.
Thus, by replacing z by r g,), we obtain

Pn(rn):90,b) = Pn(rn,go,b)+ (rgmy 1n)” MrPn(rn,go,b)+ op(1).

Finally, recalling (A14), we obtain
P n(r 0,90, b) =P n(r s(n)» Jdo, b) + OP(l)'

Appendix A.5.2. Proof of [ii]

To prove (12), it suf ces to show that,as ' +¥, b,(bn,gg,b)  h(ro,g0,b). For
any b 2 RP(*D) 'we have

bn(bn1901 b) h(r01g01 b)
k+ 1 h i
=84 & bjnbjm hjbj(,g'm)(bn,go) ajh,-(,';’m)(ro,go) :
j=11 h m p

We add and substract appropriate terms and we obtain

bn(bn,go,b)  h(ro.go,b)

ke 1
=& & binbmey a)bE™(bngo) 5™ (ro.g0)+ h5™(ro.go)]
=11 h m p
ki, (hm) (hm)
ta a bjnbjmahy; " (bn,go) hiy 7 (ro,go)] (A15)
=11 h m p
i, h (hm) (hm)
=a a bjabjm (& a)b;; " (bn,go)  hy5 7 (ro,9o)]
=11 h m p

(hm) bkl (hm) (hm)
+(B g)h, " (ro.go) +a a  bjnbjmajlb; " (bn,go) b5 " (ro.go)l,
j=11 h m p
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where, for h=1,...,p,
I(f ¢ 1 9T

— —_— ro,do, X).
nj(n) t=t; 1V2(X) ﬂgj,h ( o-9o )

(r 0,90, X)

, 1T
bJ(,gm)(fo,go) = g

ﬂ j,m
Forallj=1,... k+ 1, we have

hj aj 0.

I
h +¥
Forj=1,....,k+ 1and h = 1,...,p, using the assumption (Ag) and the fact that the

. 1 T .
functions —, ﬂ— are bounded, it follows from the Lebesgue's convergence theorem that

g],h
each term in the right-hand side of (A15) tends to O.

Appendix A.6. Proof of Theorem 3
Appendix A.6.1. Proof of [i]
The statistic that we study is

P n(r s(ny> 9o, b)

Tn(r ¢, 90,b) = .
n(r s(n)» 90, b) BT 5y 00, D)

We proved in Proposition (2) that

Pn(rs(n),QO,b) = Pn(ro,go, b)+ OP(l)'

Also, we proved that,as 1 +¥,

P
Ba(r (n). 90, b} ~ I(r 0.0, b).
Then, under Hpand asn  + ¥, we have

lim ‘bn(rs(n)ag&b) -1
h ' +y ‘](rO!g()vb) ’

and

Pn(ro,go,b) + op(1)
\bn(r s(n)1901 b)

Tn(r s(n)» 90, b) =

_ Pn(ro.go,b)  J(ro.go.b) 1 on(1)
J(r0190; b) b)n(rs(n),go, b) \bn(rs(n),go, b)
‘T n(r 0. 90, b)

Appendix A.6.2. Proof of [ii] and [iii]

The convergence of B, (r s(n)» 90, b) t0 J(r o, go, b) remains true under the local alterna-
tives Ht()n) by contiguity. Then, under Hén) andasn  +¥ , using Le Cam's third lemma,
we have

P n(r gn), 9o, b)), R

J(ro,90,b),1),
B 4. 90rD) (J(ro.go,b), 1)

Tn(r g(n), 90, b) =

which shows that the power of the test remains the same.
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Appendix A.7. Proof of Proposition 3
The proof relies on a number of lemmas that we state and prove.

Lemma A2. Assume that A1)—(A1o), (B1)—(Bs), and (B?)—(Bg) hold. Then, for any sequence
s(n) of positive integers satisfying, @  +¥,n/ s(n)! 0O, for any sequence of consistent
and asymptotically normal estimatofsyy 0, 1 0fgo and for anyb 2 RP(+D underHp and as
n+¥,

Pn(r 0. 90, b) = Pn(rOvQO,s(n)vb)"' OP(l)'

Proof. Foranyr 2 RPand (g,b) 2 RP(k*D)  RP(+D) for gy, the maximum likelihood
estimator of gg, we write a rst-order Taylor expansion of P ,(r g, gg, b) in a neighborhood
of o, and we obtain, for some eo,n lying between go and &,

Pn(ro.go.b) = Pn(ro.on.b) (800 90)” TgPn(ro,bon, b)
+(bon  90)” TGP n(r0,800.0)(B0n Qo).

where

0 1
ﬂélpn(r01go,n1b) ﬂélgppn(roago,n’b)
ﬂspn(roygopab): 2M p(k+ 1)
ﬂspglpn(roygo,nvb) ﬂéppn(rOaQO,n,b)

Our aim is to prove that, under Hg, asn  +¥,

(9o 90)>1Tgpn(r 0.Bon. b) = op(1), (Al6)
(Bon  90)” T3P n(r 0,800, 0) (Bon  9o) = op(1). (A17)

Starting with (A17), by multiplying and dividing by P n, we observe that

(Bon  90)” T3P n(r0,80,.0) (Bon  90)

p_ 1 o
n(ton o) p(k+ 1) % 5P n(ro 8op. b) o(k 1) ko gokp(k+ 1

For &, an eﬁtimator of go, by following the same techniques as in Proposition 1, under Hg,
asn  +¥, n(bon go) converges in distribution to a normal distributionand  §on 9o
tends to O in probabilityas 1 +¥. D

Then, to prove (A17), it suf ces to show that jjj ‘ﬂg P n(ro,80n: )jij pk+ 1)/~ Ntendsin
probability,as n  + ¥, to some positive random variable. Recalling (4), we have
Q1 KTl

by T9mh(r g, b)f ¢[#(r,g)].
V(% 1%21&1 mh (r,g,b)f ¢[#(r,9)]

1
Pn(r,g,b): pﬁ
t

Then,

ﬂngm'h(r01g1xt 1)
= Wlﬂnggm'h(l’ 0,9, %Xt 1),...,Wk+1ﬂgk+1Tgm’h(r0,g,Xt 1) g 2 Rp(k+l),

and

TTImn(ro,9,X%; 1) =
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0 1
W2(t)Hg, TImh(r 0,9, X; 1) 0 0
0 W3(t)Hg, T9mn(ro, 9, % 1) - : E
: ' g 0
0 0 WE+:L(t)|_|§!k+1-rgm'h(rO’g'xt 1)

2M p(k+1)(R)v
where, forany i = 1,...,k+ 1,Hg,[T9mn(ro,g,X; 1)]is the Hessian matrix of T9mn with

respect to g;.
Recall that we wish to bound Pl—ﬁjjj 5P n(r 0,80, b)jli pks 1)- FOr any b 2 RP(k+ 1)

we have

1
p*ﬁﬂép n(r 0, go,n! b)

1 é‘l 1 k:l op b ﬂzTg ( g x )f [#(( g )]
~h m(r o, 8o, ro,

n elv(xt ) rglgl m,hlg 0800, Xt ) ¢[#(ro 8oy,
28 1 gt . 8 o §
— - ﬂ T m,h r , ,X 1‘[ T r , ,X
ngl\/Z(Xt ) nglhezll mn(Tg (ro,80n. Xt 1)) (TgT(ro,8op Xt 1))
1 n 1 k+1

40800~ 8 gz &
f Ovn n t:1V2(Xt 1) m=1
18 1 Krp

a a bm,h

ToT(ro 8on Xe Of #(ro. 8o+ = & 5
g 0:8Gon: M 1)) f 0, 80on ntzlvz(xt 1) z.2,

—

p
a bmnTomn(ro, 800, Xt 1)
h=1

Tgm'h(roago,nixt 1) ﬂgT(rOrQO,ant l) ﬂgT(rngo,ant l)

t 0f4(r 0. 80,0)]
= C1n(ro.8on:b)  C2n(ro, 8pn b) c3n(ro,8pn b))+ can(ro 8o b).

By assumptions (B(l)), (Ag), (A4) and (As), using multiple Taylor expansion and the
ergodic theorem, since # is independent of F; ;, the study of the asymptotic behavior of
Cini=1,...,4, shows that

”J Ci,n(r 0 go,nv b)”] p(k+1) < ¥

Then, fori = 1,...,4, we proved that jjjc;n(en,do, b)jjj pk+ 1) CONVerges to a nite positive
number. From this, we nd that TP n(r 0,805, b) (s 1)/ n converges to a nite
' p

positive number.
For proving (A17), one can write

(Bon  90)” T3P n(r 0,80, 0) (Bon  90)
1 ..
%JJJ ﬂé Pn(ro, §o,n, b)jjj p(k+ 1) kon Qo) kp(k+ 1)°

1
FB(Qo,n gO)
n p(k+ 1)

Using Proposition 1, we can see that, under Ho, k@o gokp(k+ 1)/ P n converges to a nite
go tends to 0 2 RPK*D in probability, and

Since on
n converges under Hg to some nite positive number, it

positive number.
2
5P n(r 0, 8o, b) o(k+ 1)

follows that

/

(Bon  90)” T3P n(r 0,800, 0) (Bon  9o) = op(1). (A18)
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Now, we prove that

(90 Q’O,n)> flgP n(ro.&on, b) = op(1).
By adding and subtracting appropriate terms, we obtain
Pn(ro,go,b) = Pn(ro,80n,b)+( 90  8osn))TgP n(ro,on,b)
+(Bosn) Bon)TgPn(ro, &on, b) + op(1),
where fs(n)g, 1 stands for a sequence of positive integers such that n/ s(n)! 0 as
n  +¥.
Observing that,asn = +¥,
p q_ r -
n(do bosm)” = s(N(do  bosm)” O op(1), (A19)

it is easy to see that,
> _ P > ok
(9o Bosn))” TgPn(ro.Bon.b) =" n(gdo Bogn)) FFﬁﬂan(fo,Do,n,b)-

By assumptions (B?), (Ag), (Bs) and (As), using a suitable application of the ergodic theorem,
since# is independent of F; ;, we can show that

9o Bosn)y TgPn(ro,on,b) = op(1).

Thus,

Pn(ro,9o,0) = Pn(ro,Bon b)+ Bogn)y Yon >ﬂgF’n(fo,@o,mb)+ op(1).  (A20)

O

To treat the above equation, we need the following lemma.

Lemma A3. Lett)o, be a consistent and asymptotically normal estimataypo? RP(+D) et
fs(n)g, ; beasequence of positive integers suchrtha(n) tendsto0asn  +¥ .Forrg 2 RP

andb 2 RP(k+1) Bo.5(n) is asymptotically in the tangent spale to the curveP n(r, g, b) atgon,
de ned as follows:

n . )
Tn= y2 RPED po(roy,b)= Pn(ro,bon.b)+(y 80n)” TgPn(ro Gon,b) -

Proof. Writing a second-order Taylor expansion of P (r o, 80, b) in a neighborhood of
bon, for some B 4,) lying between 9,y and §op, we obtain

Pn(ro,Bosn):P) = Pn(ro.9on.b)+ bosn)y Bon  TgPn(ro fon.b)

1
* 5 Yos)  Yon TP n(r 0,805 0) Bosn) Bon -

To prove that,asn + ¥, o, belongs to ¥, it suf ces to show that

Bosy Bon  TGPn(ro,8osn)b) Bosny Gon = op(1).
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Then, we study the asymptotic distribution of P n Bosn) Bon - By adding and subtract-
ing appropriate terms, we obtain

p_ 4 — " op_
N(osrny Bon) = S(nN) Bogn) Yo ) + n(do BQon)

= op(1)+ " (g0 Bon).

It is easy to see that, asn! +¥, pﬁ(govs(n) Bon) has the same distribution as
n(go Yon) and then, ~ n(bygn) bon) converges in distribution to a normal ran-
dom vector.

Toprovethat ggny Bon ﬂéPn(ro,Qoys(n),b) Bosny Bon = op(1),itsufcesto

show that ﬂg Pn(ro, Qo,s(n)' b)/ ~ n converges in probability to a random vector.
Now, we write

1
pﬁﬂg P n(r 0, goys(n)! b) = Cl,n(r 0, goys(n)l b) Cz,n(r 0 govs(n)v b)

CS,n(r 0 QO,S(H)’ b) + C4,l‘|(r 0 goys(n)l b),

where fs(n)g, 1 stands for a sequence of positive integers satisfying n/ s(n)! 0 as
N +¥, o, is an asymptotically normal estimator of gg and Bo,s(n) lies between ¢y ()
and go.

P n converges in probability

; 2
Previously, we proved that TGP n(r o, 8. b) o 1)/
to a positive random variable where 8, lies between &, and go. Following the same
techniques, we can prove that the sequence ﬂé Pn(ro 8o S(n) b) (+ 1)/ n converges in
’ p

probability to a positive random variable, where Qo,s(n) lies between by 5n) and go.
It results that

>
Bosy Bon TGP n(ro.Bogn).b) Bosn) Bon = 0p(1).

It follows from Lemma A3 that, as n! +¥, o gn) belongs to the tangent space ¥,.
Replacing y by §q gy, We obtain

Pn(ro,Bogny:0) = Pn(ro.ton,b) + (Bosn) Bon)” TP n(ro, Gon, b) + op(1)
Recalling (A20), we obtain
Pn(ro.go,b) = Pn(ro,ogny, 0) + op(1).
O

Now we need the following lemma.

Lemma A4. Assume that A1)—(A10), (B1)—(Bs) and B)—(BY) hold. Letf §ongn 1 be a sequence
of consistent and asymptotically normal estimatorg@f Lets(n) be any sequence of positive
integers such that/ s(n)  Oasrd  +¥. Then, foranyb 2 RP(k* D underHg, asi  +¥,
we have

Pn(rn,go,b) = Pn(rn,@os(n)ub)'*' op(1).

Proof. Following the same techniques as above and by applying Taylor expansion of
P n(rn,go, b) in aneighborhood of §o,, for some 8, lying between go and go,n, we obtain

Pn(rn.go,b) = Pn(rn,8on.b) (Bon 90)>ﬂgpn(rna@0.n:b)
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+ S®on 90) P o n.Bon D) (Bon  Go).

We have
(ton 90)>ﬂépn(rn,§0,nvb)(@0,n do)

p_— 1 .. .
n(Gon do) p(k+ 1) pﬁ ﬂéPn(l’ n 8on: D) i p(k+1)k@O,n do) okt 1)’

Recall that, under Hy, P n(Gon go) converges to a nite Gaussian random vector and,

almost surely, asnl.  +¥,@yn gotendstoO 2 RP(k+1) We study the convergence of

TP n(rn.8pn.b)/ N
Based on the proof of Lemma A2, we have

1
P*ﬁﬂépn(r m@o,na b)

19 1 Mt 5
= =8 3 2 Im,h

nglV(Xt 1) ma:'lhaz'lbm'hﬂg-r (rn’eo,naxt 1)ff[#t(rn.§0,n)]

2 1 k+1 P X

23 - 3 2 Im,h

ntelvz(xt 1) maz'lhelbm'h(ﬂgT (rn. 800Xt ))(TgT(rn. 8,))

0 1 n 1 k+1 P g

fY[#(r n, A ——— 8 3 bp,nTImn(r , X

t#(rn go,n)] ntlez(Xt ﬂr?zlt&l m,h (rn eo,n t 1)
) 0 1 n 1 k+1 p

TaT(rn.80n. Xt Df (0 8o)I+ =& 5o & & bmn
g ns»¥0o,n f n:»¥0,n “t:le(Xt 1) 11 m

Tgm‘h(rmgoﬂvxt 1) ﬂgT(rnago,th 1) ﬂgT(rm@o,naxt 1) i
£ 904 (r n, o))

Based on the assumptions B)—(Bs), (B?)—(Bg) and using the same techniques, we can
prove that (1/ " n) jjj ﬂéPn(r n, 8o, D)]ij pks 1) CONVerges to a nite positive number.
Thus, (1 ° n) jjj ﬂéPn(r n: 8o, D)l p(k+ 1) CONVerges almost surely to a nite random

positive number.
From these results, we can conclude that

(Bon  90)” TGP n(rn. 8on.b)(Bon  9o) = 0p(1).

Then, we can write

Pn(rn,go,b) = Pn(rn,ton.b)+ (9o @O,n)> TgPn(rn,Gon. b) + op(1).
Adding and subtracting appropriate terms, we obtain
>
Pn(rn,go,b) = Pn(r m@O,na b)+ 9o @O,s(n) TgP n(rn, @0,n, b)
>
+ bosn) bon flgP n(rn,tiopn, b) + op(1).
By the assumptions (B1)-(Bs) and by the ergodic theorem, we can prove that

Pn(rn,go,b) = Pn(rn,@os(n)ub)'*' op(1),
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where fs(n)g)n 1is a sequence of positive integers such that,ash +¥ ,n/s(n) 0.

Returning to the proof of Proposition 3, and using Lemma A2, we have
Pn(rn,go,b) = Pn(rn, o5y, 0) + op(1).
We can write
P n(rs(n), 90, b) = Pn(r gn), Boseny, b) + 0p(1).
From Proposition 2, we have
Pn(ro.go,b) = Pn(rgny. 9o, b) + 0p(1),

and

Pn(ro,go,b)  Pn(rgny:9sn):b) = Pn(ro,go,b)  Pn(rgm), go b) + op(1).

Finally, using the above results, we can write

P n(r 0 gO- b) =P n(r s(n), go,s(n), b) + OP(].)
O
Appendix A.8. Proof of Theorem 4

Appendix A.8.1. Proof of [i]
The test statistic is

P n(l‘ s(n): go,s(n)v b)
‘bn(r s(n)ygo,s(n)v b)

Ta(r s(n)+ Bos(n) b) =

We proved in Proposition 3 that
Pn(ro.go.b) = Pn(rgny, Bosny. b) + op(1).
We also proved that, asn +¥,
P
Ba(r sny» Doy DY~ I(r 0,90, b).
Thus, under Hp, asn  +¥ , we have

Bn(r s(n) Bos(ny ) _

h M J(ro.90.b) L
and
Tn(r s(n)» Bo,s(ny- P)
- _Pn(ro.go.b) 1 on(1)
Ba(r sy Bosny: D) Bn(r sy Doy )
— Pn(ro.go,b) J(ro,90,b) N 1 o (1)

J(ro,90,b)  By(r gy Bosn) b)  Bn(r () Bos(n). b)
'-F n(rO!QOIb)'
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Appendix A.8.2. Proof of [ii] and [iii]
The convergence of B, (r s(n)s Bos(n)» ) t0 I(ro,go, b) remains true under the local

alternative HE)”) by contiguity. Then, under HEJ”) andasn  +¥,using Le Cam's third
lemma, we have

Pn(r s(n)» go,s(n)v b)l R|
@n(r s(n)» go,s(n)v b)

Then, we can say that the power of the test remains the same.
For more proof details, see [36].

Tn(r ¢(n), 90, b) = (J(r 0,90, b), 1).
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