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Abstract: We study a likelihood ratio test for testing the conditional mean of a class of piece-wise

stationary CHARN models. We establish the locally asymptotically normal (LAN) structure of the

family of likelihoods under study. We prove that the test is asymptotically optimal, and we give an

explicit form of its asymptotic local power. We describe an algorithm for detecting change points and

estimating their locations. The estimates are obtained as time indices, maximizing the estimate of the

local power. The simulation study we conduct shows the good performance of our method on the

examples considered. This method is also applied to a set of �nancial data.

Keywords: CHARN models; change points; LAN; likelihood ratio tests

MSC: 62M10; 62M02; 62M05; 62F03; 62F05

1. Introduction

Let d, p, k, n 2 N and k << n. Assume the observations X1, . . . , Xn issued from the
following piece-wise stationary CHARN model (see, e.g., [1])

X t = T(r 0 + g � w(t);Xt � 1) + V (Xt � 1)#t , t 2 Z, (1)

with

X t = Yt,j = T(r 0 + g jw j (t);Xt � 1,j ) + V (Xt � 1,j )#t , t j � 1 � t < t j ,

j = 1, . . . ,k + 1, (2)

where for j = 1,. . . , k, (Yt,j ) t2Z is a stationary and ergodic process; r 0 2 Rp, T(r 0, .)
and V (.) are real-valued functions with inf x2Rd V (x) > 0; the t j , j = 0,. . . , k + 1, are
potential instants of changes with t 0 = 1 and t k+ 1 = n + 1; for j = 1,. . . , k, Xt,j =
(Yt,j , . . . ,Yt � d+ 1,j )> , Xt j � 1+ ` = Xt j � 1+ ` ,j , ` = 0,. . . , d � 1 and for t 2 [t j � 1 + d � 1,t j ), Xt =

(X t , . . . , X t � d+ 1)> ; for j, ` = 1,. . . , k, j 6= ` , the processes(Yt,j ) t2Z and (Yt,` ) t2Z are mutu-

ally independent; (#t ) t2Z is standard white noise with density f . g =
�
g>

1 , . . . ,g>
k+ 1

� >
,

g j 2 Rp, j = 1,. . . , k + 1; w(t) = ( 1[t 0,t 1) (t), 1[t 1,t 2) (t), . . . , 1[t k� 1,t k) (t), 1[t k,t k+ 1)(t))
> =

(w1(t), . . .,wk+ 1(t)) 2 f 0,1gk+ 1; for g =
�
g>

1 , . . . ,g>
k+ 1

� >
and w(t) = (w1(t), . . . ,wk+ 1(t))

> ,
g � w(t) stands for g � w(t) = g1w1(t) + � � � + gk+ 1wk+ 1(t) 2 Rp, and
giwi = ( g i ,1wi , . . . , g i ,pwi ) 2 Rp. The class of models (2) is very large. It contains models
such as AR(p), ARCH( p), EXPAR(p), and GEXPAR(p) whose statistical and probability
properties are widely studied in the literature (see, e.g., [ 2] for a study of the ergodicity of
GEXPAR models).
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As noted in [ 3], the assumption that (Xt,j ) t2Z and (Xt,` ) t2Z are independent can be

extended to some weak dependence assumption. In this paper, for g0 2 Rp(k+ 1) and
b 2 Rp(k+ 1) depending on the t js, we construct a likelihood ratio test for testing

H0 : g = g0 against H (n)
b : g = gn = g0 +

b
p

n
. (3)

A particular case of this work is studied in [ 4]. The literature on change points is
extensive and varied. Some basic notions and theory are presented in [5], where one can
�nd number of references on the �rst works on the subject. Most of the recent papers on
change points are in time series or regression contexts. Various methods and techniques
are used for the study. Ref. [6] proposes a test for parameter changes. The observations
are assumed to follow an exponential distribution. The author presents a derivation using
the method of [ 7]. Ref. [8] studies the problem of changes in the parameters of AR models
and the variance in the white noise using the likelihood ratio statistic. Ref. [ 9] proposes
test statistics for detecting a break in the trend function of a dynamic univariate time
series. The tests are based on the mean and exponential statistics of [10] and the supremum
statistic of [11]. Another method for detecting change points is introduced in [ 12]. The
authors present a multiple-change-point analysis for which the Markov Chain Monte Carlo
(MCMC) sampler plays a fundamental role. They propose an attractive methodology
for the change-point problem in a Bayesian context. The reversible jump algorithm is
presented. Ref. [13] also studies the problem of detecting change points in the mean of a
signal corrupted by additive noise. The number of change points is estimated by a method
based on a penalized least-square criterion. Ref. [14] uses the minimum description length
for detecting change points for a non-stationary time series with an application to GARCH
models, stochastic volatility models and generalized state-space models as the parametric
model for the segments. Ref. [15] uses maximum likelihood to estimate the instant of the
change. The authors study the asymptotic distribution of their test by contiguity. Ref. [ 16]
investigates the regression function or its nth derivative in generalized linear models which
may have a change (discontinuity) point at an unknown location. Ref. [ 17] studies change
points in the mean of a sequence of independent normally distributed random vectors.
The asymptotic distribution of the test statistic is studied by using results from [ 18]. Also,
Ref. [19] studies this problem for independent normal means as a multiple testing problem.
The authors consider two stepwise methods, the binary segmentation method of [ 20]
and the maximum residual down method of [ 21]. They prove the consistency of these
methods. Ref. [22] studies the existence of changes in the regression parameters in a linear
model where the regressors and errors are weakly dependent. They study the asymptotic
distribution under the null hypothesis and under contiguous alternatives. In [ 23], the
authors develop a method for detecting and estimating change points in the tail of multiple
time series data. They discuss the effect of the mean and variance's change on the tails. They
focus on the detection of change points in the upper tail of the distribution of the variable of
interest, based on multiple cross-sectional time series. Ref. [24] proposes a procedure based
on the Bayesian information criterion ( BIC) in combination with the binary segmentation
algorithm to look for changes in the mean, autoregressive coef�cients, and variance in the
perturbation in piecewise autoregressive processes. The authors explain brie�y the Auto-
PARM and Auto-SLEX methods. They present different algorithms useful to the search of
multiple change points. Ref. [ 25] proposes a likelihood ratio scan method for estimating
multiple change points in piecewise stationary processes. Ref. [26] aims to estimate the
instant of change in a regression model. The authors use a sequential Bayesian change-
point algorithm that provides uncertainty bounds on both the number and location of the
change. A class of change-point test statistics is proposed in [27] that utilizes a weighting
and trimming scheme for the cumulative sum (CUSUM) process inspired by Renyi. Using
an asymptotic analysis and simulations, the authors demonstrate that this class of statistics
possesses superior power compared to traditional change-point statistics based on the
CUSUM process, when the change point is near the beginning or end of the sample. The
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authors develop a generalization of these "Renyi” statistics for testing for changes in the
parameters of linear and non-linear regression models, and in the generalized method of
moment estimation.

In this paper, we are interest in weak change detection. A weak change is one with
a too-small magnitude. Such a change may be a harbinger signaling a forthcoming criti-
cal behavior of the phenomenon studied. It can manifest in various domains including
economics and �nance, public health, bio-science, engineering, climatology, hydrology,
linguistics, genomics, signal processing and many others.

Classical change detection methods can fail in detecting weak changes. Therefore, it
may be of importance to develop new methods for their detection. In the context of time
series, very few studies have tested no change against local alternatives of weak changes.
Refs. [4,28] study this problem for the case of testing the mean of the model (1). As changes
can happen elsewhere than the mean, it can be interesting to study more general models.
Our main purpose in this paper is to extend these works to the conditional mean of (1).
With this purpose, we proceed with the same techniques. We �rst construct a test based
on the likelihood ratio, and we study its null distribution. Next, we establish the LAN
property for the likelihood families under study. From this, we prove the contiguity of H0

and H (n)
b and use it together with Le Cam's third lemma to �nd the asymptotic distribution

of the test under H (n)
b . Then, we prove the optimality of our test in the case in which

the parameters are known. In the case that the parameters are assumed to be unknown,
we prove the convergence of the estimated version of the central sequence based on the
parameter estimators to its true version. Finally, we prove that the test remains optimal
in the case of unknown parameters. Based on the explicit expression of the power, we
construct an algorithm for detecting change points and estimating their locations. The
simulation study shows the good performance of our method for detecting weak changes
and estimating their locations in the examples considered.

In Section 2, we specify the notation and list some of the main assumptions. In
Section 3, we state the theoretical results in the case thatr 0 is known and in the case that it
is unknown. The results of this section are used in Section 4 to construct an algorithm for
testing change points and estimating their locations. In Section 5, a simulation experiment
is conducted for the application of our algorithm. Section 6 concludes our work, and the
last section contains the proofs of the results stated in Section 3.

2. Notation and Assumptions

In this section, we specify the notation and list some of the main assumptions needed.

2.1. The Notation

In the sequence,M m,n(R) is the space of realm � n matrices and M n(R) = M n,n(R).
M > is the transpose of M 2 M m,n(R), and

�
�
�
�
�
� M

�
�
�
�
�
�
m� n is its Euclidean matrix norm. k.kp

is the Euclidean norm of Rp.
Let U 2 Rp(k+ 1) ; we write U =

�
U>

1 , . . . ,U>
k+ 1

� >
and for any i 2 f 1, . . . ,k + 1g,

Ui =
�
Ui1, . . . ,Uip

� > .

For M 2 M p(k+ 1) (R), we write

M =

0

B
@

M1,1 . . . M1,k+ 1
...

...
...

M k+ 1,1 . . . M k+ 1,k+ 1

1

C
A ,

where for i, j 2 f 1, . . . ,k + 1g, M i ,j 2 M p(R).
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Let = : Rd �! R be a differentiable function on Rd. For any g 2 Rp(k+ 1) , we denote by
Dg [= ] the following matrix:

Dg [= (x)] =
�

¶g1[= (x)], . . . ,¶gk+ 1[= (x)]
� >

2 Rp(k+ 1) ,

where ¶gi [= (x)] is the gradient of = with respect to g i at x 2 Rd:

¶gi [= (x)] =

 
¶=

¶gi ,1
(x),

¶=
¶gi ,2

(x), . . . ,
¶=

¶gi ,p
(x)

! >

2 Rp,

where for i = 1,. . . , k + 1 and j = 1,. . . , p,
¶=

¶gi ,j
is the partial derivative of = with respect

to g i ,j .
We also denote by Hg [= (x)] the matrix

Hg [= (x)] =

0

B
@

¶2
g1g1

= (x) . . . ¶2
g1gk+ 1

= (x)
...

...
...

¶2
gk+ 1g1

= (x) . . . ¶2
gk+ 1gk+ 1

= (x)

1

C
A 2 M p(k+ 1) (R), x 2 Rd

where, for every i 2 f 1, . . . ,k + 1g,

¶2
gi g j

= (x) =

0

B
B
B
B
B
B
@

¶2=
¶gi ,1¶gj,1

(x) . . .
¶2=

¶gi ,p¶gj,1
(x)

...
...

...
¶2=

¶gi ,1¶gj,p
(x) . . .

¶2=
¶gi ,p¶gj,p

(x)

1

C
C
C
C
C
C
A

2 M p(R), x 2 Rd.

We denote any differentiable function g with derivative g0by

f g = �
g0

g
and I (g) =

Z

R
f 2

g(x)g(x)dx.

For any t 2 f 1,. . . , ng, let F t = s(X1, . . . , Xt ) be the s-algebra generated by X1, . . . , Xt such
that #t is independent of F t � 1.

2.2. The Main Assumptions

In this section, we outline the key assumptions needed for our methodology. These
are crucial for establishing our theoretical results. Following their enumeration, we include
a remark that articulates their signi�cance. So, we assume that

(A1)
Z

R
x f (x)dx = 0 and

Z

R
x2 f (x)dx = 1.

(A2) f is differentiable with derivative f 0.
(A3) lim

x�! + ¥
f (x) = lim

x�! � ¥
f (x) = 0 = lim

x�! + ¥
f 0(x) = lim

x�! � ¥
f 0(x).

(A4) f f is differentiable with derivative f 0
f and is cf -Lipschitz where 0 < cf < + ¥ .

(A5) max
� Z

R

�
� f f (x)

�
�3

f (x)dx,
Z

R

�
�
� f 0

f (x)
�
�
� f (x)dx

�
< ¥ .

(A6) For any j = 1, . . . ,k + 1, nj (n) designates the number of observations between the
instants t j and t j � 1, such that nj (n) �! + ¥ and nj (n)/ n �! aj , asn tends to + ¥ .

(A7) For all j = 1,. . . , k + 1, the sequence(Xt ) t2Z is stationary and ergodic on [t j � 1, t j )
with stationary cumulative distribution function Fj .
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(A8) For any j = 1, . . . ,k + 1, 1 � h � m � p and b � 3,

h(h,m)
j,b (r 0, g0) = I ( f )

Z

R

� 1
V (x)

� b ¶T
¶gj,h

(r 0, g0, x)
¶T

¶gj,m
(r 0, g0, x)dFj (x) < ¥ .

(A9) max
n

supg jT(r 0, g, x)j, supg k¶g [T(r 0, g, x)]kp(k+ 1) ,

supg jjj Hg [T(r 0, g, x)]jjj p(k+ 1)

o
< n(x), for some positive function n de�ned

on Rd.

(A10) For j = 1, . . . ,k + 1, a, b 2 f 1, 2, 3g,
Z

Rd

n(x)b

V (x)adFj (x) < ¥ .

(A11) The density function of the �rst d observations on each interval [t j � 1, t j ), j =

1, . . . ,k + 1, under H (n)
b converges to its density function under H0.

Remark 1.

� Assumptions (A1)–(A5) are regularity properties required for the densityf . They are satis�ed
at least by the standard Gaussian density function.

� Assumption (A6) allows for the application of the ergodic theorem on each segment[t j � 1, t j ).
This assumption is very usual in the literature.

� Assumption (A7) ensures the ergodicy and stationarity of the process on each segment[t j � 1, t j ).
It holds at least for piece-wise stationary and ergodic AR and ARCH models.

� Assumptions (A8)–(A10) are constraints on the functionT and its derivatives. They are
satis�ed by usual models as parametric AR, ARCH, TARCH, and EXPAR models with
Gaussian noise.

� Assumption (A11) allows for the simpli�cation of the forms of the likelihoods.

3. The Theoretical Results
3.1. The Parameters Are Known

We �rst study the case where r 0 and g0 are assumed to be known. This will enlighten
the case where they are unknown. We start by establishing a LAN and contiguity results.

We denote by Qn(r 0, g0, b) the log-likelihood ratio of H0 against H (n)
b , and we de�ne the

sequenceP n by

P n(r 0, g0, b) =
1

p
n

k+ 1

å
j= 1

t j

å
t= t j � 1

1
V (Xt � 1)

b>
j N (r 0, g0,Xt � 1)f f [#t (r 0, g0)], (4)

where
N (r 0, g0,Xt � 1) = w(t) � Dg

�
T(r 0, g0,Xt � 1)

�
2 Rp,

and for all g = ( g1, . . . ,gk+ 1) 2 Rp(k+ 1) ,

#t (r 0, g) =
Xt � T(r 0, g,Xt � 1)

V (Xt � 1)
, t 2 Z. (5)

Theorem 1 (LAN ). Assume that (A1)–(A10) hold. Then, for anyb 2 Rp(k+ 1) , under H0, as
n �! + ¥ ,

Qn(r 0, g0, b) = P n(r 0, g0, b) �
h(r 0, g0, b)

2
+ op(1),

P n(r 0, g0, b) D�! N (0,h(r 0, g0, b)) ,
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with

h(r 0, g0, b) =
k+ 1

å
j= 1

aj å
1� h� m� p

b j,hb j,mh(h,m)
j,2 (r 0, g0),

h(h,m)
j,2 (r 0, g0) = I ( f )

Z

Rd

1
V2(x)

¶T
¶gj,h

(r 0, g0, x)
¶T

¶gj,m
(r 0, g0, x)dFj (x).

Proof. See Appendix A.

Corollary 1. Assume that (A1)–(A10) hold. Then, for anyb 2 Rp(k+ 1) , the sequencesf H (n)
b :

n � 1g and f H (n)
0 = H0 : n � 1g are contiguous. Furthermore, under H(n)

b , as n�! + ¥ ,

P n(r 0, g0, b) D�! N (h(r 0, g0, b), h(r 0, g0, b)) .

Proof. See Appendix A.

For known r 0 2 Rp and g0 2 Rp(k+ 1) , and for any b 2 Rp(k+ 1) , for testing H0 against

H (n)
b , we base our test on the statistic

Tn(r 0, g0, b) =
P n(r 0, g0, b)
bJn(r 0, g0, b)

, (6)

where bJn(r 0, g0, b) is any consistent estimator of J(r 0, g0, b) = h
1
2 (r 0, g0, b).

At the level of signi�cance of a 2 (0, 1), we reject H0 whenever Tn(r 0, g0, b) > Za,
where Za is a (1 � a)-quantile of the standard Gaussian distribution.

In practice, bJn(r 0, g0, b) can be taken as a natural estimator of bh
1
2
n (r 0, g0, b) with

bhn(r 0, g0, b) =
k+ 1

å
j= 1

baj å
1� h� m� p

b j,hb j,mbh(h,m)
j,2 (r 0, g0), and for j = 1,. . . , k + 1, baj is an esti-

mator of aj = lim
n�! + ¥

nj (n)/ n and

bh(h,m)
j,2 (r 0, g0) = I ( f )

Z

Rd

1
V2(x)

¶T
¶gj,h

(r 0, g0, x)
¶T

¶gj,m
(r 0, g0, x)dbFj (x),

where bFj is the empirical distribution function of the observations with indices in [t j � 1, t j ).
This can be written again as

bh(h,m)
j,2 (r 0, g0) =

I ( f )
nj (n)

t j � 1

å
t j � 1

1
V2(Xt � 1)

¶T
¶gj,h

(r 0, g0,Xt � 1)
¶T

¶gj,m
(r 0, g0, X t � 1).

Theorem 2 (Optimality) . Assume that (A1)–(A10) hold. Then, for any givenb 2 Rp(k+ 1) ,

[i] Under H0, as n�! + ¥ , Tn(r 0, g0, b) D�! N (0, 1).

[ii] Under H (n)
b , at the level of signi�cance ofa 2 [0, 1], the asymptotic power of the test based

on Tn(r 0, g0, b) is

Pk,t k = 1 � F (za � J(r 0, g0, b)) , (7)

whereza is the (1 � a)-quantile of a standard Gaussian distribution with cumulative
distribution functionF .

[iii] The test based onTn(r 0, g0, b) is locally asymptotically optimal.
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Proof. See Appendix A.

3.2. The Parameters Are Unknown

Here, we place ourselves in the framework of Model (1) with r 0 unknown. We
study the case in which g0 is known and the case in which it is unknown. We previously

studied the asymptotic normality of an estimator of r 0 under H0 and under H (n)
b . For any

t = 1, . . . ,n, r 2 Rp and g 2 Rp(k+ 1) , de�ne

#t (r , g,Xt � 1) =
X t � T(r + g � w(t),Xt � 1)

V (Xt � 1)
. (8)

We consider the following additional assumptions:

(B1) The model is identi�able, that is, for g1, g2 2 Rp(k+ 1) , g1 6= g2 =) T(r 0 + g1 �
w, x) 6= T(r 0 + g2 � w, x), x 2 Rd, w 2 f 0, 1gk+ 1,

(B2) The true parameter r 0 has a consistent estimator r n that satis�es the Bahadur
representation (see, e.g., [29]), given by

n
1
2 (r n � r 0) = n� 1

2

n

å
t= 1

U(r 0,Xt � 1)@(#t (r 0, g0)) + oP(1), (9)

where

• U(x, r 0) = ( U1(x, r 0), . . . ,Up(x, r 0)) > 2 Rp.
• For any j = 1, . . . ,k + 1, x 2 Rd, 9 $ � 0 such thatZ

Rd
kU(r 0, x)k2+ $dFj (x) < ¥ .

•
Z

R
j@(x)j2+ $ f (x)dx < ¥ and

Z

R
@(x) f (x)dx = 0.

(B3) For any j 2 f 1, . . . ,k + 1g, h 2 f 1, . . . ,pg,

max
1� ` � p

Z

Rd

�
�
�
�
�
U` (r 0, x)

V (x)
¶T

¶gj,h
(r 0, g0, x)

�
�
�
�
�
dFj (x) < ¥ ,

(B4) For any i = 1,. . . , k+ 1 and j = 1,. . . , p, there exists a ballB(r) of radius r, such that

max

8
<

:
sup

r 2 B(r)
k¶r T(r , g0, x)kp, sup

r 2 B(r)







¶r

 
¶T

¶gi ,j

!

(r , g0, x)







p

,

sup
r 2 B(r)

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
¶2

r

 
¶T

¶gi ,j

!

(r , g0, x)

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
p

9
=

;
� c (x), for some positive function c

de�ned on Rd,

(B5) For j = 1, . . . ,k + 1, ` = 1, 2, 3 anda, b 2 f 0, 1, 2, 3g,

l ( j)
a,b =

Z

Rd

na(x)c b(x)
V ` (x)

dFj (x) < ¥ .

Remark 2.

� In the literature, one can �nd numbers of models with functionsT(r 0, .) satisfying (B4)
and (B5).

� Assumption (B1) is useful for the estimation ofr 0, while (B2) helps for the study of the
distribution of the test statistic. It has been used before in [4]. It is satis�ed by least-squares
and likelihood type estimators for some usual models within (1).
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Recall that, for any b 2 Rp(k+ 1) , under H0, the central sequence with the true parameter
r 0 is denoted by P n(r 0, g0, b) and its estimated version by P n(r n, g0, b).

Proposition 1. Under the assumptions (A1)–(A10) and (B1)–(B2), we have

[i] Under H0:

p
n(r n � r 0) D�! N (0,S),

[ii] Under H (n)
b :

p
n(r n � r 0) D�! N (C, S),

where

C =
Z

R
@(x)f f (x) f (x)dx

k+ 1

å
j= 1

aj

p

å
h= 1

b j,h

Z

Rd

U(r 0, x)
V (x)

¶T
¶gj,h

(r 0, x)dFj (x) 2 Rp

and

S =
Z

R
@2(x) f (x)dx

k+ 1

å
j= 1

aj

Z

Rd
U(r 0, x)U> (r 0, x)dFj (x) 2 M p(R).

Proof. See Appendix A.

3.2.1. The Parameterg0 Is Known

As explained in [ 4], in practice, the case where the parameter g0 is known may be
encountered when there is no apparent change, and one wishes to test for possible weak
changes. That is the situation where g0 = 0. This is what is usually tested in the literature.
Recall that

h(r 0, g0, b) =
k+ 1

å
j= 1

aj å
1� h� m� p

b j,hb j,mh(h,m)
j,2 (r 0, g0).

Note that, by our assumptions, the following real numbers

h(h,m)
j,2 (r 0, g0) = I ( f )

Z

Rd

1
V2(x)

¶T
¶gj,h

(r 0, g0, x)
¶T

¶gj,m
(r 0, g0, x)dFj (x)

are �nite. Furthermore, since for any j = 1,. . . , k + 1, hj,2(r 0, g0) depends on r 0 and on Fj ,

which itself depends on r 0 (which is unknown) and on g0, we estimate it by bh(h,m)
j,2 (r n, g0),

given by

bh(h,m)
j,2 (r n, g0) =

I ( f )
nj (n)

t j � 1

å
t= t j � 1

1
V2(x)

¶T
¶gj,h

(r n, g0, x)
¶T

¶gj,m
(r n, g0, x). (10)

Despite the fact that we consider any consistent estimators of h(r 0, g0, b) and

J(r 0, g0) = h
1
2 (r 0, g0, b), we will take them here to be, respectively,

bhn(r n, g0, b) =
k+ 1

å
j= 1

baj å
1� h� m� p

b j,hb j,mbh(h,m)
j,2 (r n, g0)
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and

bJn(r n, g0, b) = bh
1
2
n (r n, g0, b),

where for all j = 1,. . . , k + 1, baj is an estimator of aj which can be taken to be baj = nj (n)/ n.

Proposition 2. Under the assumptions (A1)–(A10) and (B1)–(B5), for anyn � 0, we have, for
any sequence of positive integers s(n) such that n/ s(n) �! 0 as n �! + ¥ ,

[i]
P n(r 0, g0, b) = P n(r s(n) , g0, b) + oP(1), (11)

[ii]

bJn(r n, g0, b) �! J(r 0, g0, b). (12)

Proof. See Appendix A.

In order to test H0 against H (n)
b , for any b 2 Rp(k+ 1) , we consider the following

statistic:

Tn(r s(n) , g0, b) =
P n(r s(n) , g0, b)
bJn(r s(n) , g0, b)

.

Theorem 3 (Optimality) . Assume that (A1)–(A10) and (B1)–(B5) hold. Then, for any given
b 2 Rp(k+ 1) and for any sequences(n) of positive integers such that,n/ s(n) �! 0 asn �! + ¥ ,
we have the following:

[i] Under H0, as n�! + ¥ , Tn(r s(n) , g0, b) D�! N (0, 1).

[ii] Under H (n)
b , at the level of signi�cancea 2 ]0, 1[, the asymptotic power of the test based on

the statisticTn(r s(n) , g0, b) is Pk,t k = 1 � F (za � J(r 0, g0, b)) , whereza is the(1 � a)-
quantile of the standard Gaussian distribution with cumulative distribution functionF .

[iii] The test based on the statisticTn(r s(n) , g0, b) is locally asymptotically optimal.

Proof. See Appendix A.

3.2.2. The Parameterg0 Is Unknown

In practice, g0 is generally unknown and has to be estimated, as well as gn, where,
for any b 2 Rp(k+ 1) , gn = g0 + b/

p
n. Many methods can be used to obtain consistent

estimators of these parameters. Let bg0,n be the maximum likelihood estimator of g0 under

H0 and let bgn be the maximum likelihood estimator of gn under H (n)
b . Then, we easily have

that in probability, asymptotically,

bgn = bg0,n + b/
p

n.

The above equality allows for the study of the test statistics in the same lines as in the case
where g0 is known.
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We need the following assumptions:

(B0
1) For any m = 1, . . . ,k + 1, h = 1, . . . ,p, for Tgm,h(r , g, x) =

¶T
¶gm,h

(r , g, x),

max

(

sup
g

jTgm,h(r , g, x)j, sup
g

k¶g Tgm,h(r , g, x)kp(k+ 1) ,

sup
g

jjj ¶2
g Tgm,h(r , g, x)jjj p(k+ 1)

)

< k(x),

for some positive function k de�ned on Rd,
(B0

2) For j = 1, . . . ,k + 1, u = 1, 2, 3 anda, b 2 f 0, 1, 2, 3g,

d(u)
a,b =

Z

Rd

na(x)kb(x)
Vu(x)

dFj (x) < ¥ .

(B0
3)

p
n( bg0,n � g0) = OP(1).

Let s(n) be any sequence of positive integers satisfying n/ s(n) �! 0 asn �! + ¥ . For

testing H0 against H (n)
b , b 2 Rp(k+ 1) , we use the test based on the statistic

Tn(r s(n) , bg0,s(n) , b) =
P n(r s(n) , bg0,s(n) , b)
bJn(r s(n) , bg0,s(n) , b)

.

Proposition 3. Assume that (A1)–(A10), (B1)–(B5) and (B0
1)–(B0

3) hold. Then, for any sequence
s(n) of positive integers satisfyingn/ s(n) �! 0 asn �! + ¥ , for any sequence of consistent and
asymptotically normal estimatorsf bg0,ngn� 1 of g0 and for anyb 2 Rp(k+ 1) , we have, underH0
and as n�! + ¥ ,

P n(r 0, g0, b) = P n(r s(n) , bg0,s(n) , b) + oP(1).

Proof. See Appendix A.

Theorem 4 (Optimality) . Assume that (A1)–(A10), (B1)–(B5) and (B0
1)–(B0

3) hold. Then, for any
givenb 2 Rp(k+ 1) , we have

[i] Under H0, as n�! + ¥ , Tn(r s(n) , bg0,s(n) , b) D�! N (0, 1).

[ii] Under H (n)
b , at the level of signi�cancea 2 ]0, 1[, the asymptotic power of the test based on

the statistic
Tn(r s(n) , bg0,s(n) , b) is Pk,t k = 1 � F (za � J(r 0, g0, b)) , whereza is the(1 � a)-quantile
of the standard Gaussian distribution with cumulative distribution functionF .

[iii] The test based on the statisticTn(r s(n) , bg0,s(n) , b) is locally asymptotically optimal.

Proof. See Appendix A.

4. Application to Detection of Change Points and Their Location Estimation

The time series at hand has jumps if the parameters of its distribution change at certain
times. The current test, applied to the model (1) adjusted to this time series, for testing the
null hypothesis of no change against at least one change, is conducted with a g0 whose
components are all equal to, say, r 1, the parameter of the stationary distribution on the �rst
segment [t 0, t 1) : g0 = ( r 1, r 1, . . . ,r 1).

The test constructed in this work can do more than testing no change against at least
one change. To understand this, assume changes have been detected in the data by a given
method, and their locations have been estimated. This test can serve as a screening method
for �nding possible missing changes by this method. In this situation, one can assume the
changes already detected as well as their locations as known. With this, all the components
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of g0 will no longer be the same, and some of the t j 's in the model would be considered
known. Thus, our test can be used for testing the null hypothesis of i changes against at
least i + 1 changes, for some giveni 2 N.

For any k � 1, denote by bPk,t k any estimator of the local power Pk,t k of this test at

t k = ( t 1, . . . , t k), with the convention that P0,t 0 = a, a 2 (0, 1), the level of signi�cance.
Let z 2 (0, .1) and X1, X2, . . . ,Xm, (m << n), the m �rst stationary observations.

Our procedure for detecting changes in the time series X1, X2, . . . , Xn and estimating
their locations is described in the following algorithm.

Location 1:

(A1): Take any t between 1 and m + j, so that there is a large number of
indices before and after t (for example t = [( m + j)/2 ]).
Adjust Model (1) to X1, . . . , Xm+ j with a potential change located at the time
index t, and apply the testing procedure studied.

If j bP1,t � P 0,t 0 j > z,

Put t 1 = m + j and go to Location 2 (�rst change location estimated)

Else

Carry out j = j + 1 and go to (A1).

Location 2:

Consider the next h observations to X t 1: X t 1+ 1, . . . ,X t 1+ h
Put j = 1 and conduct the following:

(A2): Take any t between t 1 and t 1 + h + j so that there is a large number of
indices before and after t.
Adjust Model (1) to X t 1, . . . , X t 1+ h+ j with a potential change located at the
time index t and apply the testing procedure studied.

If j bP1,t � P 0,t 0 j > z,

Put t 2 = t 1 + h + j and go to Location 3 (second change location estimated)

Else

Carry out j = j + 1 and go to (A2).

Location i:

Let t i � 1 be the change location at step i-1
Put j = 1 and perform

(Ai) : Take any t between t i � 1 and t i � 1 + h + j so that there is a large number
of indices before and after t.
Adjust Model (1) to X t i � 1, . . . , X t i � 1+ h+ j with a potential change located at
the time index t and apply the testing procedure studied

If j bP1,t � P 0,t 0 j > z,

Put t i = t i � 1 + h + j, i = i + 1 and go to Location i (ith change location
estimated)

Else

Carry out j = j + 1 and go to (Ai) .

Note that simple bPk,t k can be obtained by plugging estimators of the parameters into
the expressions of the local power given in Theorems 2–4.

5. Simulation Experiment

In this section, the theoretical results are applied to simulated data, using the software
R 4.2.0. We �rst study the power of the test as a function of the magnitude of the breaks
when these are given. Next, we use the power for estimating the location of the breaks
when they are no more assumed to be �xed. The results we present in the sequel are
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obtained for the nominal levels a = 1%, 5%, 10%. Almost all the estimators in this section
are computed from 5000 replications. We use the following particular CHARN model:

X t = r 0,1 + g0j,1 +
b j,1p

n
+

�
r 0,2 + g0j,2 +

b j,2p
n

�
X t � 1 e

0

@r 0,3+ g0j,3+
b j,3p

n

1

A X2
t � 1

+ ( q1 + q2X2
t � 1)

1
2 #t , j = 1, . . . ,k, t 2 Z, (13)

where n denotes the number of observations, (#t ) t is a standard white noise with a differ-
entiable density f . Here, on [t j � 1, t j ), r 0 = ( r 0,1, r 0,2, r 0,3) 2 R3, g0j = ( g0j,1, g0j,2, g0j,3),
b j = ( b j,1, b j,2, b j,3) 2 R3; r 0, q1, q2 and g0 are parameters to be speci�ed in each particular
model considered.

5.1. Simulation Methodology

Our methodology for conducting the simulation experiment works as follows. For
some given and �xed values of r 0 = ( r 0,1, r 0,2, r 0,3) and number of changes k, for
1 � j � k + 1, we consider different values of the triplet b j = ( b j,1, b j,2, b j,3) corresponding
to the shift in the parameter on each interval [t j � 1, t j [, with b1 = ( 0, 0, 0) (indicating no
changes in the �rst interval). This provides us with nj (n), j = 1,. . . , k + 1 observations in
the j-th interval. Subsequently, we utilize the model (13) to simulate these observations, to
which our algorithm (see Section 4) is then applied.

5.2. Power Study for Given Break Locations
5.2.1.g0 and f Are Known

Now, we treat a particular case of (13). We consider n = 100,n1(n) = 40, n2(n) = 60,
g0 = 0, f is the standard Gaussian density, q1 = 1, q2 = 0.02, r 0,1 = 0.8, r 0,2 = 0.2,
r 0,3 = b j,3 = 0, T(r 0 + g jw j , x) = r 0,1 + g j,1w j + ( r 0,2 + g j,2w j )x, and for i = 1, 2,

g j,i = g0j,i + b j,i /
p

n with b j,i 2 [� 10, 10], V (x) =
p

1 + 0.02x2, ¶T/ ¶gj,1(r 0, g0, x) = 1
and ¶T/ ¶gj,2(r 0, g0, x) = x. For j = 1, 2, to study the behavior of the power as a function
of magnitudes of the changes, we �x one component of each b j and we compute the power
of the test as a function of the other components. The results are plotted on Figure 1, where
one can observe that the power grows quickly to one as the norm of the magnitude grows.

5.2.2.g0 and f Are Unknown

As we said before, in practice, g0 and f are unknown and must be estimated. While we
estimated g0 by the least-squares method, we estimate f by the Parzen–Rosenbatt estimator
(see [30]), de�ned by

bfn(x) =
1

nh2
n

n

å
t= 1

K
�

x � b#t

hn

�
, x 2 R,

where

b#t =
X t � T( br n + bgn � w(t),Xt � 1)

V (Xt � 1)
,

where br n and bgn denote the least-squares estimators ofr 0 and g0, respectively, hn is the
smoothing parameter, and K the kernel symmetric function having the following properties:

1. K(x) > 0 for any x 2 R (positivity).

2.
Z

R
K(x)dx = 1 (density).

3.
Z

R
xK(x)dx = 0 (by symmetry).

Now, we calculate the power of the test using these estimators. We choose a Gaussian

kernel K and hn � snn� 1
5 , with sn being the sample standard deviation. We consider a
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sample of n = 100observations, n1(n) = 40, n2(n) = 60 and we generate the observations
from (13). The results for r 0,1 = 0.8, r 0,2 = 0.2, r 0,3 = 0, q1 = 1 and q2 = 0.02 at
the level of signi�cance 5% are given in Figure 2. It is clear that the local power of the
test has approximately the same behavior for the standard Gaussian and the standard
Student densities. The results do not change signi�cantly for Epanechnikov, uniform
kernel, quadratic kernel, etc.

(a) b1,1 = 2 and b2,1 = 2.5

(b) b1,2 = 1 and b2,2 = 3.5

Figure 1. Power of the test with respect to b in a class of AR(1) models when f is a standard
Gaussian density.
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(a) Student case

(b) Normal case

Figure 2. Power of the test with respect to b in a class of AR(1) model when f is the kernel estimated.

5.3. Detection of Change Points and Estimation of Their Locations

In this subsection, we detect change points and we estimate their locations in simulated
data. Ref. [4] studied the case of changes only inr 0,1. We start by evaluating the power of
the test in case of no break in the data. Next, we study changes in r 0,2. Finally, we study
changes in r 0,1 and r 0,2 simultaneously.
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5.3.1. No Break

Following the algorithm in Section 4, we start by calculating the asymptotic local
power given by (A8) in the case where there is no break, that is, for k = 0. We consider a
sample of n = 200observations generated from Model (13), for g0 = 0 and f , a standard
Gaussian density.

For r 0,1 = 0.5, r 0,2 = r 0,3 = q2 = 0 and q1 = 1, the asymptotic local power of our test
with different levels of signi�cance is plotted on Figure 3. We can see there that the local
power does not exceed0.1012when a = 10%and does not exceed0.0507when a = 5%.
Then, for any a = 5%,or 10%, for the thresholds corresponding to z = 0.002and 0.0008,
respectively, we keep the null hypothesis and conclude that there is no break in the data.

(a) No break (a = 5%)

(b) No break (a = 10%)

Figure 3. No break in the data.

5.3.2. Case of One Single Break

Here, we consider the problem of detecting one single break when it happens jointly in
r 0,1 and r 0,2. For a = 5%, n = 200, r 0,1 = 0.5, r 0,2 = � 0.2and r 0,3 = b1,3 = 0, for different
values of t 1 and b1 = ( b1,1, b1,2); the estimation of the break location, as well as the root
mean square error (RMSE), is presented in Table 1. One can see from this table that the
estimation is accurate and that the RMSE is large for smaller jj bjj .
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Table 1. Break location in an AR(1) model with the corresponding RMSE.

t 1

�
b1,1
b1,2

�

�
2
1

� �
1
2

� �
� 2
1

� �
� 2
3

� �
� 3
2

�

80 78 (4.32) 81 (1.41) 82 (4.01) 80 (0.654) 80 (0.34)
100 99 (6.96) 99 (4.67) 102 (3.34) 101 (1.23) 100 (0.54)
120 122 (5.12) 121 (2.32) 119 (2.45) 120 (0.23) 121 (1.23)
140 143 (10.24) 142 (2.22) 141 (2.35) 140 (0.22) 141 (1.12)
160 164 (11.65) 164 (4.43) 162 (2.23) 161 (1.32) 161 (1.12)
185 188 (8.21) 189 (5.32) 190 (6.33) 190 (7.43) 189 (8.23)

5.4. Case of Three Breaks (k= 3)

Now, we study the case of three breaks when piece-wise models AR(1) and AR(1)-ARCH(1)
are adjusted to the data. Note that these models are sub-classes of CHARN(1,1) models.

5.4.1. AR(1) Models

We start with AR(1) models. For t = ( t 1, t 2, t 3), the data are obtained from (13); for
j = 1, 2, 3, r 0,3 = b j,3 = 0, q2 = 0, q1 = 1, and (#t ) is a sequence of standard Gaussian white
noise. The number of change points is assumed to be unknown, and we aim to detect them
and estimate their locations using our theoretical results and following our algorithm. For
5000replications, n = 400, r 0 = ( r 0,1, r 0,2) = ( 0.2, 0.3), t = ( t 1, t 2, t 3) = ( 90, 190, 275),
for different values of the magnitude of change b j = ( b j,1, b j,2)> , j = 1, 2, 3, and for
the same threshold z = 0.1%, the estimations obtained are displayed in Table 2 to-
gether with their associated RMSE (in brackets). These results seem to show that our
method tends to estimate the correct number of changes but overestimates their loca-
tions with a relatively large RMSE when the jumps in the parameters of the AR(1) mod-
els are too small. Again for an AR(1) model, for j = 1, 2, 3, we �x b j = (( 3, 2), (1, 3),
(� 1, 1)) > , and the instants of breaks t = ( 90, 190, 275), and we monitor the corresponding
break estimates with respect to the variation in the threshold corresponding to different z.
For z = 0.07%, our method overestimates the number of changes (six instants detected).
For z = 0.1%and 0.15%, it estimates the correct number of changes but overestimates their
locations. For z = 0.25%, it underestimates the number of changes and overestimates their
locations. The overestimation of the break locations may be explained by the weakness of
the magnitude of changes. If we consider the same study for b = (( 5, 3), (� 1 � 2), (4, 6)) > ,
we obtain the same results for the number of changes, but with more accurate change
location estimations.

5.4.2. AR(1)-ARCH(1) Models

Here, we consider Model (13) for r 0,1 = 0.2, r 0,2 = 0.3, b1 = ( 3, � 2)> , b2 = ( 1, 1)> ,
b3 = ( � 2, 4)> , q1 = 1, q2 = 0.02 and r 0,3 = b j,3 = 0, j = 1, 2, 3, which leads to an
AR(1)-ARCH(1) model. For n = 350,Table 3 shows the estimation of change locations
corresponding to the same z and different magnitudes of change. We can see that our
method estimates the correct number of changes but overestimates their locations with a
relatively large RMSE.
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Table 2. Break location estimation in a class of AR(1) models for a �xed z.

( b1, b2, b3) t = ( t 1, t 2, t 3) = ( 90, 190, 275)
and z = 0.1
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5 ,
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Table 3. Break location estimation in AR-ARCH models.

( b1, b2, b3) t = ( t 1, t 2, t 3) = ( 90, 190, 275)
and z = 0.1
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4
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A (92,193,277) (6.10)

5.4.3. Conclusions

Based on the previous simulation results, we can conclude that our method is sensitive
to the choice of z, and is ef�cient in detecting weak changes and estimating their locations
in an AR(1)-ARCH(1) model we have considered when the magnitudes of the changes are
not too small.

5.5. Comparison with [27]

In a class of shifted models, Ref. [28] performed a comparison between her method,
which is a different case from ours, and other methods including the one of [ 27]. She
concluded that her method is more ef�cient for estimating weak break locations.

In this section, we compare our method to that of [ 27], denoted by SCUSUM, for a
class of more general models. Recalling Model (13), we consider many cases of one single
break corresponding to different instants t 1, and we take r 0,3 = b1,3 = q2 = 0 and q1 = 1.
For n = 200,a = 5%, r 0,1 = 0.5, r 0,2 = � 0.2and different values of b1 = ( b1,1, b1,2) we
perform 1000 replications, and at each replication, the change location is estimated by
SCUSUM and by our method. Table 4 shows the results obtained.

For most of the 1000 replications, SCUSUM was not able to detect any change. For
that reason, we kept only the cases where it detected a change, and we calculatec the mean
of the change locations estimated. The results are displayed in Table 4, from which it is
obvious that our method is more accurate than SCUSUM for the detection of weak changes
in the parameters of the AR(1) model studied.
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Table 4. Break location estimation obtained by our method and SCUSUM for different instants of
break t 1 and different magnitudes of change.

t 1 = 80

�
b1,1
b1,2

�

�
2
1

� �
1
2

� �
� 2
1

� �
� 2
3

� �
� 3
2

�

Our method 83 81 82 80 80
SCUSUM 95 99 86 122 99

t 1 = 120
Our method 122 121 121 120 121
SCUSUM 110 114 105 125 122

t 1 = 185
Our method 189 188 186 186 185
SCUSUM 105 103 122 114 101

5.6. Application to Real Data

Here, we applied our methodology to detecting changes in the log S&P stock price
data obtained from the website https://�nance.yahoo.com/quote/, accessed on 1 May
2024. These daily data cover the period from January 1992 to December 2000 and represent
one of the most closely followed stock market indices worldwide, serving as a signi�cant
indicator of the U.S. economy. The raw data exhibit a trend, which shows that the S&P
500 index is non-stationary (see Figure 4). With this, our methodology can not be directly
applied to this series.

Let Pt denote the S&P 500 stock price index on day t, and de�ne X t as

X t = log
�

Pt

Pt � 1

�

The function log being monotonic implies that the change-point locations in (Pt ),
( log(Pt )) , and (X t ) are identical. Graphically (refer to Figure 5), X t appears to be approx-
imately piece-wise stationary over a �nite number of segments, which aligns with the
requirements for applying our methodology to study changes in the raw data.

Figure 4. Estimated change points in the S&P 500 indices.

https://finance.yahoo.com/quote/
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Figure 5. Estimated change points in the residual series of S&P 500 indices.

To accommodate these characteristics, we adjust the CHARN model X t = b j /
p

n +
qj#t within each segment [t j , t j+ 1), where #t � N (0, 1). The Gaussian assumption is
validated by applying the Shapiro–Wilk test.

Then, applying our procedure to this model, we obtained the following break location
dates: 1992-11-11, 1994-03-03, 1995-02-14, 1996-07-11, 1997-07-14, 1998-02-09, 1998-06-22,
1998-11-02, 1999-03-17, and 1999-10-13. The changes occurring in 1992 can be linked to the
damage caused by the hurricane Andrew or by the Europian Monetary System crisis. The
one in 1994 can be associated with the U.S. lifting of the trade embargo on Vietnam. Those
in 1995 can be due to the bankruptcy of the Barings bank. That in 1997 may be associated
with the Asian crisis. Those in 1998 may be connected to the rescue organized by the New
York Federal Reverve Bank. Finally, those of 1999 can be associated with the cancellation of
the 1933 Glass–Steagall Act by the so-called Grammi–Leachi–Bliley Act.

6. Conclusions

We generalized the work of [ 4] to a class of more general CHARN models. We studied
weak breaks in the parameters of the function T when the function V and the parameters
r 0 and g0 are known. We established a LAN and contiguity results. We given an explicit
expression of the local power of the test.

Next, we studied the case where r 0 is unknown and g0 is known or unknown. We
estimated these parameters, and proved the convergence of the central sequence based on
the estimated parameters to the one based on the true parameters. In this case, we proved
that the test remains optimal if we replace the parameters with their estimators. From
these results, we used the theoretical power for detecting weak breaks and estimating their
locations in time series through an algorithm that we constructed.

The simulation experiment conducted shows that our method can detect weak breaks
in the parameters of the linear AR(1) and the non-linear AR(1)-ARCH(1) models considered.
Also, the location of the breaks as well as their number can be accurately estimated when
the magnitudes are not too small.

Compared to [ 27], it seems to be more ef�cient for estimating weak break locations.
Sometimes, the method in [27] detects breaks in data simulated with no break. This did not
happen with our method when we chose a suitable z. Our method was also applied to a
set of �nancial data.
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Appendix A. Proofs

This section provides the proofs of the results stated in the preceding sections.

Appendix A.1. Proof of Theorem 1

For any b 2 Rp(k+ 1) , the log-likelihood ratio of H0 against H (n)
b is given by

Qn(r 0, g0, b) =
n

å
t= 1

f log[ f (#t (r 0, gn))] � log[ f (#t (r 0, g0))] g. (A1)

First, we show that as n �! + ¥ , Qn(r 0, g0, b) decomposes into

Qn(r 0, g0, b) = P n � Dn + oP(1),

where

Dn =
1

2n

n

å
t= 1

�
1

V2(Xt � 1)
b> M (g0,Xt � 1)bf 0

f [#t (r 0, g0)]

�
1

V (Xt � 1)
b> H (g0,Xt � 1)bf f [#t (r 0, g0)]

�
, (A2)

P n =
1

p
n

n

å
t= 1

�
1

V (Xt � 1)
b> N (g0,Xt � 1)f f [#t (r 0, g0)]

�
, (A3)

and

• N(g,Xt� 1) =
�

w1(t)¶g1[T(r 0, g,Xt� 1)], . . .,wk+ 1(t)¶gk+ 1[T(r 0, g,Xt� 1)]
� >

2 Rp(k+ 1) ,

and for i = 1, . . . ,k + 1, wi 2 f 0, 1g,

• M (g,Xt � 1) =

0

B
B
B
B
@

M1(g,Xt � 1) 0 . . . 0

0 M2(g,Xt � 1)
...

...
...

...
... 0

0 . . . 0 M k+ 1(g,Xt � 1)

1

C
C
C
C
A

2 M p(k+ 1) (R),

where 0 2 M p(R) is a null matrix and for any i = 1, . . . ,k + 1,

M i (g,Xt � 1) = w2
i (t)

0

B
B
B
B
B
@

¶T
¶gi ,1

(r 0, g,Xt � 1)
¶T

¶gi ,1
(r 0, g,Xt � 1) . . .

¶T
¶gi ,1

(r 0, g,Xt � 1)
¶T

¶gi ,p
(r 0, g,Xt � 1)

...
...

...
¶T

¶gi ,p
(r 0, g,Xt � 1)

¶T
¶gi ,1

(r 0, g,Xt � 1) . . .
¶T

¶gi ,p
(r 0, g,Xt � 1)

¶T
¶gi ,p

(r 0, g,Xt � 1)

1

C
C
C
C
C
A

2 M p(R),
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• H (g,Xt � 1) =

0

B
B
B
B
@

H 1(g,Xt � 1) 0 . . . 0

0 H 2(g,Xt � 1)
...

...
...

...
... 0

0 . . . 0 H k+ 1(g,Xt � 1)

1

C
C
C
C
A

2 M p(k+ 1) (R),

where, for i = 1, . . . ,k + 1,

H i (g,Xt� 1) = w2
i (t)

0

B
B
B
B
B
B
@

¶2T
¶g2

i,1

(r 0, g,Xt� 1) . . .
¶2T

¶gi,p¶gi,1
(r 0, g,Xt� 1)

...
...

...
¶2T

¶gi,1¶gi,p
(r 0, g,Xt� 1) . . .

¶2T
¶g2

i,p

(r 0, g,Xt� 1)

1

C
C
C
C
C
C
A

2 M p(R).

Applying a �rst-order Taylor expansion on log
�

f [#t (r 0, g)]
	

in a neighborhood of g0,
we obtain, for some eg lying between g0 and gn,

logf f [#t (r 0, gn)]g � logf f [#t (r 0, g0)]g = (gn � g0)> (Dg [log( f f #t (g)g)])g= g0

+
1
2

(gn � g0)> Hg
�

log( f f #t (g)g)
�

g= eg (gn � g0).

To simplify the study, we calculate all the expressions we need.

• Dg
�
#t (r 0, g)

�
= �

1
V (Xt � 1)

N (g,Xt � 1),

• Hg
�
#t (r 0, g)

�
= �

1
V (Xt � 1)

Hg
�
T(r 0, g,Xt � 1)

�
,

• Dg
�

log( f f #t (r 0, g)g)
�

=
1

V (Xt � 1)
N (g,Xt � 1)f f [#t (r 0, g)]

= � Dg
�
#t (r 0, g)

�
f f [#t (r 0, g)],

• Hg
�

logf f [#t (r 0, g)]g
�

= �
1

V2(Xt � 1)
M (g,Xt � 1)f 0

f [#t (r 0, g)]

+
1

V (Xt � 1)
Hg

�
T(r 0, g,Xt � 1)

�
f f [#t (r 0, g)]

= �
1

V2(Xt � 1)
M (g,Xt � 1)f 0

f [#t (r 0, g)]

� Hg
�
#t (r 0, g)

�
f f [#t (r 0, g)].

Then,

logf f [#t (r 0, gn)]g � logf f [#t (r 0, g0)]g =
1

p
n

b> N (g0,Xt � 1)
V (Xt � 1)

f f [#t (r 0, g0)]

�
1

2n

�
1

V2(Xt � 1)
b> M ( eg,Xt � 1)bf 0

f [#t (r 0, eg)]
�

�
1

2n

�
1

V (Xt � 1)
b> Hg

�
T(r 0, eg,Xt � 1)

�
bf f [#t (r 0, eg)]

�
.

Now,

Qn(r 0, g0, b) =
1

p
n

n

å
t= 1

1
V (Xt � 1)

b> N (g0,Xt � 1)f f [#t (r 0, g0)]

�
1

2n

n

å
t= 1

1
V2(Xt � 1)

b> M ( eg,Xt � 1)bf 0
f [#t (r 0, eg)]

+
1

2n

n

å
t= 1

1
V (Xt � 1)

b> H ( eg,Xt � 1)bf f [#t (r 0, eg)],

where, observing that for any t and for any i 6= j, wi (t)w j (t) = 0,
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M ( eg,Xt � 1) =

0

B
B
B
B
@

M1( eg,Xt � 1) 0 . . . 0

0 M2( eg,Xt � 1)
...

...
...

...
... 0

0 . . . 0 M k+ 1( eg,Xt � 1)

1

C
C
C
C
A

2 M p(k+ 1) (R),

with 0 2 M p(R) standing for a null matrix and

M i ( eg,Xt � 1) =

w2
i (t)

0

B
B
B
B
B
@

¶T
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¶T
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1

C
C
C
C
C
A

2 M p(R),

H ( eg,Xt � 1) =
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B
B
B
B
@

H 1( eg,Xt � 1) 0 . . . 0

0 H 2( eg,Xt � 1)
...

...
...

...
... 0

0 . . . 0 H k+ 1( eg,Xt � 1)

1

C
C
C
C
A

2 M p(k+ 1) (R),

with

H i ( eg,Xt � 1) = w2
i (t)

0

B
B
B
B
B
B
@

¶2T
¶g2

i,1

(r 0, eg,Xt � 1) . . .
¶2T

¶gi ,p¶gi ,1
(r 0, eg,Xt � 1)

...
...

...
¶2T

¶gi ,1¶gi ,p
(r 0, eg,Xt � 1) . . .

¶2T
¶g2

i,p

(r 0, eg,Xt � 1)

1

C
C
C
C
C
C
A

2 M p(R).

Let

c ( eg,Xt � 1) = �
1

2n

n

å
t= 1

1
V2(Xt � 1)

b> M ( eg,Xt � 1)bf 0
f [#t (r 0, eg)]

+
1

2n

n

å
t= 1

1
V (Xt � 1)

b>
�

H ( eg,Xt � 1)
�

bf f [#t (r 0, eg)].

Using (A3), we have Ef f f [#t (r 0, g)]g = 0, Ef f 0
f [#t (r 0, g)]g = I ( f ) and

Efj f f [#t (r 0, g)]jg < ¥ . Now, using ( A4) and the ergodic theorem, from a simple cal-
culation, we can prove that

jc ( eg,Xt � 1) � c (g0,Xt � 1)j P����!
n�! + ¥

0.

It results from above that

Qn(r 0, g0, b) = P n � Dn + oP(1),

where Dn and P n are de�ned by (A2) and (A3), respectively.
Now, we study of the asymptotic behavior of Dn under H0.
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By the piecewise stationarity and ergodicity, for any j = 1,. . . , k + 1, we can write,
almost surely,

lim
n�! + ¥

Dn =
1
2

k+ 1

å
j= 1

aj å
1� h� m� p

b j,hb j,mh(h,m)
j,2 (r 0, g0) =

h(r 0, g0, b)
2

,

with

h(h,m)
j,2 (r 0, g0) = I ( f )

Z

Rd

1
V2(x)

¶T
¶gj,h

(r 0, g0, x)
¶T

¶gj,m
(r 0, g0, x)dFj (x).

Thus, we can write

Qn = P n �
h(r 0, g0, b)

2
+ oP(1).

Now, we prove that under H0,

P n
D�! N (0,h(r 0, g0, b)) .

We consider the sequence

Qn,j =
1

p
n

j

å
t= 1

1
V (Xt � 1)

b> N (g0,Xt � 1)f f [#t (r 0, g0)], j = 1, . . . ,n,

and we de�ne for every t = 1, . . . ,n,

y n,t =
1

p
n

1
V (Xt � 1)

b> N (g0,Xt � 1)f f [#t (r 0, g0)].

We use Corollary 3.1 of [31] to study the asymptotic behavior of Qn,j .
It is easy to prove that

�
(Qn,j , F j ), j = 1, . . . ,n is a martingale sequence.

Using the fact that #t is independent of F t � 1 for t = 1,. . . , n and using the ergodic
theorem, we can show that, almost surely,

lim
n�! + ¥

n

å
t= 1

E(y 2
n,t

�
�F t � 1) =

k+ 1

å
j= 1

aj å
1� h� m� p

b j,hb j,mh(h,m)
j,2 (r 0, g0) = h(r 0, g0, b)

< ¥ ,

which shows that the �rst condition of Corollary 3.1 of [ 31] is veri�ed. It remains to check
the Linderberg condition. Let e > 0; by the Hölder inequality, using Markov inequality
and the ergodic theorem, we can write that as n �! ¥ ,

n

å
t= 1

E(y 2
n,t1jy n,t j> e

�
�F t � 1) a.s�! 0.

Then, the conditions of Corollary 3.1 of [ 31] are completely veri�ed, so that under H0,
we have

P n(r 0, g0, b) D�! N (0,h(r 0, g0, b)) . (A4)

Consequently, under H0, we have

Qn(r 0, g0, b) D�! N
�

�
h(r 0, g0, b)

2
, h(r 0, g0, b)

�
. (A5)



Mathematics2024, 12, 2092 24 of 40

Collecting the above results, the LAN property is established with the central sequence
P n(r 0, g0, b).

Appendix A.2. Proof of Corollary 1

For any b 2 Rp(k+ 1) , from Theorem 1, under H0, asn �! + ¥ ,

P n(r 0, g0, b) D�! N (0,h(r 0, g0, b)) .

It results that, under H0, asn �! + ¥ ,

Qn(r 0, g0, b) D�! N
�

�
h(r 0, g0, b)

2
, h(r 0, g0, b)

�
.

Then, it is easy to see that under H0, asn �! + ¥ ,

�
P n(g0, b)

Qn(r 0, g0, b)

�
D�! N

0

@

0

@
0

�
h(r 0, g0, b)

2

1

A ,
�

h(r 0, g0, b) s1,2
s2,1 h(r 0, g0, b)

�
1

A ,

where s1,2 = s2,1 = lim
n�! + ¥

Cov(P n, Qn) = lim
n�! + ¥

[E(P nQn) � E(P n)E(Qn)].

SinceE(P n) = 0 and

lim
n�! + ¥

E
�

QnP n

�
= lim

n�! + ¥

h
E

�
P 2

n

�
� E

�
P nDn

�i
= h(r 0, g0, b),

under H0, we have

�
P n(r 0, g0, b)

Qn

�
D�! N

0

@

0

@
0

�
h(r 0, g0, b)

2

1

A ,
�

h(r 0, g0, b) h(r 0, g0, b)
h(r 0, g0, b) h(r 0, g0, b)

�
1

A . (A6)

Using [32] or [ 33], we obtain that the sequences f H (n)
b : n � 1g and f H (n)

0 = H0 : n � 1g

are contiguous, and that under H (n)
b , asn �! + ¥ ,

P n(r 0, g0, b) D�! N (h(r 0, g0, b), h(r 0, g0, b)) .

Appendix A.3. Proof of Theorem 2

From Theorem 1 and Corollary 1, we can conclude immediately that, under H0, as
n �! + ¥ ,

�
P n(r 0, g0, b)

Qn

�
D�! N

0

@

0

@
0

�
h(r 0, g0, b)

2

1

A ,
�

h(r 0, g0, b) h(r 0, g0, b)
h(r 0, g0, b) h(r 0, g0, b)

�
1

A . (A7)

Part [i] is a direct consequence of Theorem 2 and is brie�y explained in the proof of
Corollary 1.

As explained there, the sequences of hypotheses are contiguous, and underH (n)
b , as

n �! + ¥ , we have

P n(r 0, g0, b) D�! N (h(r 0, g0, b), h(r 0, g0, b)) .

By (A6) and the Le Cam's third lemma (Proposition 4.2 in [32]), under H (n)
b , asn �! + ¥ ,

P n(r 0, g0, b) D�! N (h(r 0, g0, b), h(r 0, g0, b)) .
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We recall that, under H0, asn �! + ¥ ,

bJn(r 0, g0, b) �! J(r 0, g0, b),

where J(r 0, g0, b) =
p

h(r 0, g0, b).

This convergence remains true under H (n)
b by contiguity. From Theorem 2, it can be

seen that, asn �! + ¥ , under H0,

Tn(r 0, g0, b) D�! N (0, 1).

Thus, by the Le Cam's third lemma, we can conclude that under H (n)
b , asn �! + ¥ ,

P n(r 0, g0, b)
bJn(r 0, g0, b)

D�! N (J(r 0, g0, b), 1).

Indeed, for n � 1, we can write

P n(r 0, g0, b)
bJn(r 0, g0, b)

=
P n(r 0, g0, b)
J(r 0, g0, b)

�
J(r 0, g0, b)
bJn(r 0, g0, b)

.

From which it results that, under H (n)
b and as n �! + ¥ ,

P n(r 0, g0, b)
J(r 0, g0, b)

D�! N (J(r 0, g0, b), 1).

For parts [ii] and [iii], to calculate the asymptotic power of our test statistic, we calculate

the asymptotic cumulative distribution of
P n(r 0, g0, b)
bJn(r 0, g0, b)

under H (n)
b . We have

lim
n�! + ¥

P
� P n(r 0, g0, b)

bJn(r 0, g0, b)
> za

�
� H (n)

b

�
= lim

n�! + ¥
P

� P n(r 0, g0, b)
J(r 0, g0, b)

> za
�
� H (n)

b

�

= 1 � F (za � J(r 0, g0, b)) (A8)

= Pk,t k,

where F is the cumulative distribution function of a standard Gaussian law with za its
(1 � a)-quantile.

By Section 4.4.3 of [33], the test based onTn(r 0, g0, b) is locally asymptotically optimal.

Appendix A.4. Proof of Proposition 1

Appendix A.4.1. Proof of [i]

From the Bahadur representation (9), as in [34,35], we consider the following sequence:

Rn,j = n� 1
2

j

å
t= 1

U(r 0,Xt � 1)@[#t (r 0, g0)], j = 1, . . . ,n.

and

u> Rn,j =
1

p
n

j

å
t= 1

yt (u) 2 R, where yt (u) = u> U(r 0,Xt � 1)@[#t (r 0, g0)],

u 2 Rp.

It is easy to see thatu> Rn,j is centered for every j = 1,. . . , n. SinceEf@[#t (r 0, g0)]g = 0
for any t 2 N, from a simple calculation, we prove that f (u> Rn,j , F j ), j = 1,. . . , ng is a
martingale sequence.



Mathematics2024, 12, 2092 26 of 40

We check now the �rst condition of Corollary 3.1 of [ 31]. Since#t is independent of F t � 1
for t = 1, . . . ,n, we can write

n

å
t= 1

E
� h

n� 1
2 yt (u)

i 2�
�F t � 1

�

=
n

å
t= 1

n� 1E
� h

u> U(r 0,Xt � 1)@[#t (r 0, g0)]
i 2�

�F t � 1

�

=
k+ 1

å
j= 1

nj (n)
n

1
nj (n)

t j

å
t= t j � 1

h
u> U(r 0,Xt � 1)

i 2
E

n
@2[#t (r 0, g0)]

o
.

By the assumptions (B2), (B3) and the ergodic theorem, for j = 1, . . . ,k + 1, we can write

1
nj (n)

t j

å
t= t j � 1

h
u> U(r 0,Xt � 1)

i 2
E

n
@2[#t (r 0, g0)]

o
a.s.�!

Z

Rd

h
u> U(r 0, x)

i 2
dFj (x)

�
Z

R
@2(x) f (x)dx < ¥ .

Then,

n

å
t= 1

Ef [
1

p
n

yt (u)]2�
�F t � 1g a.s.����!

n�! + ¥
s =

Z

R
@2(x) f (x)dx

�
k+ 1

å
j= 1

aj

Z

Rd

h
u> U(r 0, x)

i 2
dFj (x).

Finally, we check the Linderberg condition, that is, the second condition of Corollary 3.1
of [31]. In this purpose, we prove that, as n �! + ¥ ,

n

å
t= 1

E

8
<

:

h
n� 1

2 yt (u)
i 2

1�
�
�
�n

� 1
2 yt (u)

�
�
�
�> e

�
�
�F t � 1

9
=

;
a.s.�! 0.

Let e > 0. By the Hölder inequality, and Markov inequalities, we can write

n

å
t= 1

E

8
<

:

h
n� 1

2 yt (u)
i 2

1�
�
�
�n

� 1
2 yt (u)

�
�
�
�> e

�
�
�F t � 1

9
=

;

�
n

å
t= 1

E
2
3

� h
n� 1

2 yt (u)
i 3�

�
�F t � 1

�
E

1
3

8
<

:
1�

�
�
�n

� 1
2 yt (u)

�
�
�
�> e

�
�
�F t � 1

9
=

;

�
n

å
t= 1

E
2
3

� h
n� 1

2 yt (u)
i 3�

�
�F t � 1

� E
1
3

� �
�
�n� 1

2 yt (u)
�
�
�
3

> e
�
�
�F t � 1

�

3
p

e

�
1

3
p

e
p

n

k+ 1

å
j= 1

nj (n)
n

1
nj (n)

t j

å
t= t j � 1

ku> U(r 0,Xt � 1)k3E
n

j@[#t (r 0, g0)]j3
o

.

By the piece-wise stationarity and the ergodic theorem, for j = 1,. . . , k + 1, we obtain
almost surely that

lim
n�! + ¥

1
p

n

k+ 1

å
j= 1

nj (n)
n

0

@ 1
nj (n)

t j

å
t= t j � 1

ku> U(r 0,Xt � 1)k3E
n

j@[#t (r 0, g0)]j3
o

1

A = 0
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Then, using Corollary 3.1 of [31], we conclude that, under H0, we have

u> p
n(r n � r 0) D�! N (0,u> Su).

which implies that, under H0 and as n �! + ¥ ,

p
n(r n � r 0) D�! N (0,S)

where S is the covariance matrix de�ned as

S =
Z

R
@2(x) f (x)dx

k+ 1

å
j= 1

aj

Z

Rd
U(r 0, x)U> (r 0, x)dFj (x) 2 M p(R).

Appendix A.4.2. Proof of [ii]

We recall that under H0, asn �! + ¥ ,

p
n(r n � r 0) a.s.�! N (0,S),

Qn(r 0, g0, b) D�! N
�

�
h(r 0, g0, b)

2
, h(r 0, g0, b)

�
,

where

h(r 0, g0, b) =
k+ 1

å
j= 1

aj å
1� h� m� p

b j,hb j,mh(h,m)
j,2 (r 0, g0),

with

h(h,m)
j,2 (r 0, g0) = I ( f )

Z

Rd

1
V2(x)

¶T
¶gj,h

(r 0, g0, x)
¶T

¶gj,m
(r 0, g0, x)dFj (x).

We consider the sequenceQn =
p

n(r n � r 0). By Le Cam's third lemma, under H0, as
n �! + ¥ ,

�
Qn

Qn(r 0, g0, b)

�
D�! N

0

@

0

@
0

�
h(r 0, g0, b)

2

1

A , X

1

A ,

where

X = lim
n�! + ¥

�
Var(Qn) Cov(Qn, Qn)

Cov(Qn, Qn) Var(Qn)

�
,

Cov(Qn, Qn(r 0, g0, b) = Cov
�

Qn, P n(r 0, g0, b) �
h(r 0, g0, b)

2

�

=
1

p
n

n

å
t= 1

�
E

�
Qn

V (Xt � 1)
b> N (g0,Xt � 1)f f [#t (r 0, g0)]

�

� E(Qn)E
�

1
V (Xt � 1)

b> N (g0,Xt � 1)
�

E
n

f f [#t (r 0, g0)]
o �

.

Since Ef f f [#t (r 0, g0)]g = 0, lim
n�! + ¥

E(Qn) = 0, #t is independent of

F t � 1, Ef@[#t (r 0, g0)]g = 0, and using the stationarity and the ergodic theorem, we can
easily see that

Cov(Qn, Qn(r 0, g0, b) ����!
n! + ¥

C,
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where

C =
Z

R
@(x)f f (x) f (x)dx

n

å
j= 1

ajw j

p

å
h= 1

b j,h

Z

Rd

U(r 0, x)
V (x)

¶T
¶gj,h

(r 0, x)dFj (x).

Then, under H0, we have

�
Qn

Qn(r 0, g0, b)

�
D�! N

0

@

0

@
0

�
h(r 0, g0, b)

2

1

A ,
�

S C>

C h(r 0, g0, b)

�
1

A .

From this result and Le Cam's third lemma, under H (n)
1 , asn tends to + ¥ , we have

p
n(r n � r 0) = Qn

D�! N (C, S).

Appendix A.5. Proof of Proposition 2

Appendix A.5.1. Proof of [i]

We prove the convergence of the central sequence (4) to its estimated version in order
to verify that the test still be optimal when we replace the parameter by its estimator. For
any r 2 Rp and g, b 2 Rp(k+ 1) , we de�ne

Qn(r , g, b) =
n

å
t= 1

log
�

f
�
#t

�
r , g +

b
p

n

���
� logf f [#t (r , g)]g + oP(1).

Then the log-likelihood ratio of H0 against H (n)
b is Q(r 0, g0, b). For er n lying between r n

and r 0, we write a second-order Taylor expansion of P n(r 0, g0, b) around r n and obtain

P n(r 0, g0, b) = P n(r n, g0, b) + ( r 0 � r n)> ¶r P n(r n, g0, b) (A9)

+
1
2

(r 0 � r n)> ¶2
r P n( er n, g0, b)( r 0 � r n).

We wish to prove that, under H0, asn �! + ¥ ,

(r 0 � r n)> ¶r P n(r n, g0, b) = oP(1) (A10)

1
2

(r 0 � r n)> ¶2
r P n( er n, g0, b)( r 0 � r n) = oP(1). (A11)

In order to simplify the notations, let Tgm,h = ¶T/ ¶gm,h.

1
p

n
¶2

r P n( er n, g0, b)

=
1
n

n

å
t= 1

1
V (Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h¶2
r (Tgm,h)( er n, g0, b)f f [#t ( er n, g0)]

�
2
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h¶r (Tgm,h)( er n, g0, b)¶>
r T( er n,Xt � 1) f 0

f [#t ( er n, g0)]

�
1
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,hTgm,h( er n, g0, b)¶2
r T( er n,Xt � 1) f 0

f [#t ( er n, g0)]

+
1
n

n

å
t= 1

1
V3(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,hTgm,h( er n, g0, b)¶r T( er n,Xt � 1)¶>
r T( er n,Xt � 1)

� f 00
f [#t ( er n, g0)]

= D1,n( er n, g0, b) + D2,n( er n, g0, b) + D3,n( er n, g0, b) + D4,n( er n, g0, b).
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By a multiple use of a Taylor expansion, by the assumptions ( B4), (A9), by the ergodic
theorem, from a simple calculation, we prove that, for i = 1,. . . , 4, jjj Di ,n( er n, g0, b)jjj p

is bounded.
Thus, asn �! + ¥ ,

�
1/

p
n

�
jjj ¶2

r P n( er n, g0, b)jjj p tends in probability to a �nite posi-
tive real number, denoted by b.
Recall from (A11) that, as n �! + ¥ , we have

1
2

�
�
� (r 0 � r n)> ¶2

r P n( er n, g0, b)( r 0 � r n)
�
�
�

�
1
2


 p

n(r 0 � r n)



p

�
�
�
�
�
�
�
�
�

1
p

n
¶2

r P n( er n, g0, b)
�
�
�
�
�
�
�
�
�
p
kr 0 � r nkp

�
1
2


 p

n(r 0 � r n)



pkr 0 � r nkp � b.

Since under H0, asn �! + ¥ , we have

p
n(r 0 � r n) D�! N (0,S),

it results that

1
2

(r 0 � r n)> ¶2
r P n( er n, g0, b)( r 0 � r n) = oP(1). (A12)

From (A12), we can write

P n(r 0, g0, b) = P n(r n, g0, b) + ( r 0 � r n)> ¶r P n(r n, g0, b) + oP(1). (A13)

Now, we prove that
(r 0 � r n)> ¶r P n(r n, g0, b) = oP(1).

Adding and subtracting appropriate terms, as n �! + ¥ , we can write

P n(r 0, g0, b)

= P n(r n, g0, b) + ( r 0 � r n + r s(n) � r s(n) )
> ¶r P n(r n, g0, b) + oP(1)

= P n(r n, g0, b) + ( r 0 � r s(n) )
> ¶r P n(r n, g0, b) + ( r s(n) � r n)> ¶r P n(r n, g0, b)

+ oP(1),

where f s(n)gn� 1 stands for a sequence of positive integers such that n/ s(n) �! 0
asn �! + ¥ .

Observing that, as n �! + ¥ ,

p
n(r 0 � r s(n) )

> =
q

s(n)( r 0 � r s(n) )
> �

r
n

s(n)
= oP(1),

it is easy to see that,

(r 0 � r s(n) )
> ¶r P n(r n, g0, b) =

p
n(r 0 � r s(n) )

> 1
p

n
¶r P n(r n, g0, b).

Then, it suf�ces to show that ¶r P n(r n, g0, b)/
p

n converges in probability to a random
vector. For this, we can write the following decomposition:

1
p

n
¶r P n(r n, g0, b)

=
1
n

n

å
t= 1

1
V (Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h¶r (Tgm,h)(r n, g0,Xt � 1)f f [#t (r n, g0)]
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�
1
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,hTgm,h(r n, g0,Xt � 1)¶r T(r n, g0,Xt � 1) f 0
f [#t (r n, g0)]

= f 1,n(r n, g0, b) + f 2,n(r n, g0, b).

Using the assumptions (B4) and (A5), and the ergodic theorem, since #t is independent of
F t � 1, the study of the asymptotic behavior of f 1,n(r n, g0, b) and f 2,n(r n, g0, b) shows that,
asn �! + ¥ ,

f 1,n(r n, g0, b) P�! 0 2 Rp.

Thus, kf 2,n(r n, g0, b)kp tends in probability to a �nite positive real number. Consequently,






1
p

n
¶r P n(r n, g0, b)






p
� kf 1,n(r n, g0, b)kp + kf 2,n(r n, g0, b)kp < ¥ .

It results that

(r 0 � r s(n) )
> ¶r P n(r n, g0, b) = oP(1).

Hence,

P n(r 0, g0, b) = P n(r n, g0, b) + ( r s(n) � r n)> ¶r P n(r n, g0, b) + oP(1). (A14)

In order to treat the above equation (A14), we need the following lemma.

Lemma A1. Assume that (B2) holds. Letf s(n)gn� 1 be a sequence of positive integers such that
n/ s(n) tends to0 asn �! + ¥ . Forg0, b 2 Rp(k+ 1) , r s(n) is asymptotically in the tangent space
Tn to the curve ofP n(r , g, b) at r n, de�ned as follows:

Tn =
n

z 2 Rp/ P n(z, g0, b) = P n(r n, g0, b) + ( z � r n)> ¶r P n(r n, g0, b)
o

.

Proof. Writing a second-order Taylor expansion of P n(r s(n) , g0, b) in a neighborhood of
r n, for some er s(n) lying between r s(n) and r n, we obtain

P n(r s(n) , g0, b) = P n(r n, g0, b) + ( r s(n) � r n)> ¶r P n(r n, g0, b)

+
1
2

(r s(n) � r n)> ¶2
r P n( er s(n) , g0, b)( r s(n) � r n).

To prove that, as n �! + ¥ , r s(n) belongs to Tn, it suf�ces to show that (r s(n) � r n)> ¶2
r P n

( er s(n) , g0, b)( r s(n) � r n) = oP(1).
To �nd the asymptotic distribution of

p
n(r s(n) � r n), we add and substract appropri-

ate terms and we obtain

p
n(r s(n) � r n) =

q
s(n)( r s(n) � r 0)

r
n

s(n)
+

p
n(r 0 � r n)

= oP(1) +
p

n(r 0 � r n).

Then, asymptotically,
p

n(r s(n) � r n) has the same distribution as
p

n(r 0 � r n). This means
that

p
n(r s(n) � r n) converges in distribution to a normal law.
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Now, to prove that (r s(n) � r n)> ¶2
r P n( er s(n) , g0, b)( r s(n) � r n) = oP(1), it suf�ces to

show that the sequence¶2
r P n( er s(n) , g0, b)/

p
n converges in probability to a random vector.

Recall that

1
p

n
¶2

r P n( er s(n) , g0, b)

= D1,n( er s(n) , g0, b) + D2,n( er s(n) , g0, b) + D3,n( er s(n) , g0, b) + D4,n( er s(n) , g0, b),

where f s(n)gn� 1 stands for a sequence of positive integers such that n/ s(n) �! 0 as
n �! + ¥ , r n is given by (B2), and er s(n) lies between r s(n) and r 0.

We have, asn �! + ¥ , ker s(n) � r 0k � k r s(n) � r 0k a.s.�! 0, then,

er s(n) � r 0 = oP(1).

For some er n lying between r n and r 0, we proved previously that jjj ¶2
r P n( er n, g0, b)jjj p/

p
n

converges in probability, as n �! + ¥ , to a �nite positive number. By following the same
lines, we can prove that jjj ¶2

r P n( er s(n) , g0, b)jjj p/
p

n converges in probability to a positive
�nite number, where er s(n) lies between r s(n) and r 0. Consequently,

(r s(n) � r n)> ¶2
r P n( er s(n) , g0, b)( r s(n) � r n) = oP(1).

It results from Lemma A1 that, as n �! + ¥ , r s(n) belongs to the tangent spaceTn.
Thus, by replacing z by r s(n) , we obtain

P n(r s(n) , g0, b) = P n(r n, g0, b) + ( r s(n) � r n)> ¶r P n(r n, g0, b) + oP(1).

Finally, recalling (A14), we obtain

P n(r 0, g0, b) = P n(r s(n) , g0, b) + oP(1).

Appendix A.5.2. Proof of [ii]

To prove (12), it suf�ces to show that, as n �! + ¥ , bhn( br n, g0, b) �! h(r 0, g0, b). For
any b 2 Rp(k+ 1) , we have

bhn( br n, g0, b) � h(r 0, g0, b)

=
k+ 1

å
j= 1

å
1� h� m� p

b j,hb j,m

h
baj bh

(h,m)
j,2 ( br n, g0) � ajh

(h,m)
j,2 (r 0, g0)

i
.

We add and substract appropriate terms and we obtain

bhn(br n, g0, b) � h(r 0, g0, b)

=
k+ 1

å
j= 1

å
1� h� m� p

bj,hbj,m(baj � aj)[bh
(h,m)
j,2 (br n, g0) � h(h,m)

j,2 (r 0, g0) + h(h,m)
j,2 (r 0, g0)]

+
k+ 1

å
j= 1

å
1� h� m� p

bj,hbj,maj [bh
(h,m)
j,2 (br n, g0) � h(h,m)

j,2 (r 0, g0)] (A15)

=
k+ 1

å
j= 1

å
1� h� m� p

bj,hbj,m

h
(baj � aj)[bh

(h,m)
j,2 (br n, g0) � h(h,m)

j,2 (r 0, g0)]

+ ( baj � aj)h
(h,m)
j,2 (r 0, g0)

i
+

k+ 1

å
j= 1

å
1� h� m� p

bj,hbj,maj [bh
(h,m)
j,2 (br n, g0) � h(h,m)

j,2 (r 0, g0)],
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where, for h = 1, . . . ,p,

bh(h,m)
j,2 (r 0, g0) =

I ( f )
nj (n)

t j

å
t= t j � 1

1
V2(x)

¶T
¶gj,h

(r 0, g0, x)
¶T

¶gj,m
(r 0, g0, x).

For all j = 1, . . . ,k + 1, we have

baj � aj ����!
n�! + ¥

0.

For j = 1,. . . , k + 1 and h = 1,. . . , p, using the assumption ( A9) and the fact that the

functions
1
V

,
¶T

¶gj,h
are bounded, it follows from the Lebesgue's convergence theorem that

each term in the right-hand side of (A15) tends to 0.

Appendix A.6. Proof of Theorem 3

Appendix A.6.1. Proof of [i]

The statistic that we study is

Tn(r s(n) , g0, b) =
P n(r s(n) , g0, b)
bJn(r s(n) , g0, b)

.

We proved in Proposition (2) that

P n(r s(n) , g0, b) = P n(r 0, g0, b) + oP(1).

Also, we proved that, as n �! + ¥ ,

bJn(r s(n) , g0, b) P�! J(r 0, g0, b).

Then, under H0 and as n �! + ¥ , we have

lim
n�! + ¥

bJn(r s(n) , g0, b)

J(r 0, g0, b)
= 1,

and

Tn(r s(n) , g0, b) =
P n(r 0, g0, b) + oP(1)

bJn(r s(n) , g0, b)

=
P n(r 0, g0, b)
J(r 0, g0, b)

�
J(r 0, g0, b)

bJn(r s(n) , g0, b)
+

1
bJn(r s(n) , g0, b)

� oP(1)

' T n(r 0, g0, b).

Appendix A.6.2. Proof of [ii] and [iii]

The convergence of bJn(r s(n) , g0, b) to J(r 0, g0, b) remains true under the local alterna-

tives H (n)
b by contiguity. Then, under H (n)

b and as n �! + ¥ , using Le Cam's third lemma,
we have

Tn(r s(n) , g0, b) =
P n(r s(n) , g0, b)
bJn(r s(n) , g0, b)

D�! N (J(r 0, g0, b), 1),

which shows that the power of the test remains the same.
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Appendix A.7. Proof of Proposition 3

The proof relies on a number of lemmas that we state and prove.

Lemma A2. Assume that (A1)–(A10), (B1)–(B5), and (B0
1)–(B0

3) hold. Then, for any sequence
s(n) of positive integers satisfying, asn �! + ¥ , n/ s(n) �! 0, for any sequence of consistent
and asymptotically normal estimatorsf bg0,ngn� 1 of g0 and for anyb 2 Rp(k+ 1) , underH0 and as
n �! + ¥ ,

P n(r 0, g0, b) = P n(r 0, bg0,s(n) , b) + oP(1).

Proof. For any r 2 Rp and (g, b) 2 Rp(k+ 1) � Rp(k+ 1) , for bg0,n the maximum likelihood
estimator of g0, we write a �rst-order Taylor expansion of P n(r 0, g0, b) in a neighborhood
of bg0,n and we obtain, for some eeg0,n lying between g0 and bg0,n,

P n(r 0, g0, b) = P n(r 0, bg0,n, b) � ( bg0,n � g0)> ¶gP n(r 0, bg0,n, b)

+ ( bg0,n � g0)> ¶2
gP n(r 0, eeg0,n, b)( bg0,n � g0),

where

¶2
gP n(r 0, eeg0,n, b) =

0

B
B
@

¶2
g1

P n(r 0, eeg0,n, b) . . . ¶2
g1gp

P n(r 0, eeg0,n, b)
...

...
...

¶2
gpg1

P n(r 0, eeg0,n, b) . . . ¶2
gp

P n(r 0, eeg0,n, b)

1

C
C
A 2 M p(k+ 1) .

Our aim is to prove that, under H0, asn �! + ¥ ,

( bg0,n � g0)> ¶gP n(r 0, bg0,n, b) = oP(1), (A16)

( bg0,n � g0)> ¶2
gP n(r 0, eeg0,n, b) ( bg0,n � g0) = oP(1). (A17)

Starting with (A17), by multiplying and dividing by
p

n, we observe that
�
�
� ( bg0,n � g0)> ¶2

gP n(r 0, eeg0,n, b) ( bg0,n � g0)
�
�
�

�

 p

n( bg0,n � g0)



p(k+ 1) �
1

p
n

�
�
�
�
�
�
�
�
�¶2

gP n(r 0, eeg0,n, b)
�
�
�
�
�
�
�
�
�
p(k+ 1)

� kbg0,n � g0kp(k+ 1) .

For bg0,n, an estimator of g0, by following the same techniques as in Proposition 1, under H0,
asn �! + ¥ ,

p
n( bg0,n � g0) converges in distribution to a normal distribution and bg0,n � g0

tends to 0 in probability as n �! + ¥ .
Then, to prove (A17), it suf�ces to show that jjj ¶2

gP n(r 0, eeg0,n, b)jjj p(k+ 1) /
p

n tends in
probability, as n �! + ¥ , to some positive random variable. Recalling (4), we have

P n(r , g, b) =
1

p
n

n

å
t= 1

1
V (Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,hTgm,h(r , g, b)f f [#t (r , g)].

Then,

¶g Tgm,h(r 0, g,Xt � 1)

=
�
w1¶g1Tgm,h(r 0, g,Xt � 1), . . . ,wk+ 1¶gk+ 1Tgm,h(r 0, g,Xt � 1)

� > 2 Rp(k+ 1) ,

and

¶2
g Tgm,h (r 0, g,Xt � 1) =
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0

B
B
B
B
B
@

w2
1(t)Hg1 Tgm,h (r 0, g,Xt � 1) 0 . . . 0

0 w2
2(t)Hg2 Tgm,h (r 0, g,Xt � 1)

...
...

...
...

... 0
0 . . . 0 w2

k+ 1(t)Hgk+ 1 Tgm,h (r 0, g,Xt � 1)

1

C
C
C
C
C
A

2 M p(k+ 1) (R),

where, for any i = 1,. . . , k + 1, Hg i [T
gm,h(r 0, g,Xt � 1)] is the Hessian matrix of Tgm,h with

respect to g i .

Recall that we wish to bound
1

p
n

jjj ¶2
gP n(r 0, eeg0,n, b)jjj p(k+ 1) . For any b 2 Rp(k+ 1) ,

we have

1
p

n
¶2

gP n(r 0, eeg0,n, b)

=
1
n

n

å
t= 1

1
V (Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h¶2
g Tgm,h(r 0, eeg0,n,Xt � 1)f f [#t (r 0, eeg0,n)]

�
2
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h(¶g Tgm,h(r 0, eeg0,n,Xt � 1))( ¶g T(r 0, eeg0,n,Xt � 1)) >

� f 0
f [#t (r 0, eeg0,n)] �

1
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,hTgm,h(r 0, eeg0,n,Xt � 1)

� ¶2
g T(r 0, eeg0,n,Xt � 1)f 0

f [#t (r 0, eeg0,n)] +
1
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h

� Tgm,h(r 0, eeg0,n,Xt � 1)
�

¶g T(r 0, eeg0,n,Xt � 1)
��

¶g T(r 0, eeg0,n,Xt � 1)
� >

� f 00
f [#t (r 0, eeg0,n)]

= c1,n(r 0, eeg0,n, b) � c2,n(r 0, eeg0,n, b) � c3,n(r 0, eeg0,n, b) + c4,n(r 0, eeg0,n, b).

By assumptions (B0
1), (A9), (A4) and (A5), using multiple Taylor expansion and the

ergodic theorem, since #t is independent of F t � 1, the study of the asymptotic behavior of
c i ,n, i = 1, . . . , 4, shows that

jjj c i ,n(r 0, eeg0,n, b)jjj p(k+ 1) < ¥ .

Then, for i = 1,. . . , 4, we proved that jjj c i ,n( er n, g0, b)jjj p(k+ 1) converges to a �nite positive

number. From this, we �nd that
�
�
�
�
�
�
�
�
�¶2

gP n(r 0, eeg0,n, b)
�
�
�
�
�
�
�
�
�
p(k+ 1)

/
p

n converges to a �nite

positive number.
For proving (A17), one can write

�
�
� ( bg0,n � g0)> ¶2

gP n(r 0, eeg0,n, b) ( bg0,n � g0)
�
�
�

�





1
p

n
( bg0,n � g0)






p(k+ 1)

1
p

n
jjj ¶2

gP n(r 0, eeg0,n, b)jjj p(k+ 1) kbg0,n � g0)kp(k+ 1) .

Using Proposition 1, we can see that, under H0, kbg0,n � g0kp(k+ 1) /
p

n converges to a �nite

positive number. Since bg0,n � g0 tends to 0 2 Rp(k+ 1) in probability, and�
�
�
�
�
�
�
�
�¶2

gP n(r 0, eg0,n, b)
�
�
�
�
�
�
�
�
�
p(k+ 1)

/
p

n converges under H0 to some �nite positive number, it

follows that

( bg0,n � g0)> ¶2
gP n(r 0, eeg0,n, b) ( bg0,n � g0) = oP(1). (A18)
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Now, we prove that

(g0 � bg0,n)> ¶gP n(r 0, bg0,n, b) = oP(1).

By adding and subtracting appropriate terms, we obtain

P n(r 0, g0, b) = P n(r 0, bg0,n, b) + ( g0 � bg0,s(n) )¶gP n(r 0, bg0,n, b)

+ ( bg0,s(n) � bg0,n)¶gP n(r 0, bg0,n, b) + oP(1),

where f s(n)gn� 1 stands for a sequence of positive integers such that n/ s(n) �! 0 as
n �! + ¥ .

Observing that, as n �! + ¥ ,

p
n(g0 � bg0,s(n) )

> =
q

s(n)(g0 � bg0,s(n) )
> �

r
n

s(n)
= oP(1), (A19)

it is easy to see that,

(g0 � bg0,s(n) )
> ¶gP n(r 0, bg0,n, b) =

p
n(g0 � bg0,s(n) )

> 1
p

n
¶gP n(r 0, bg0,n, b).

By assumptions (B0
1), (A9), (B5) and (A5), using a suitable application of the ergodic theorem,

since #t is independent of F t � 1, we can show that

�
g0 � bg0,s(n)

� >
¶gP n(r 0, bg0,n, b) = oP(1).

Thus,

P n(r 0, g0, b) = P n(r 0, bg0,n, b) +
�

bg0,s(n) � bg0,n

� >
¶gP n(r 0, bg0,n, b) + oP(1). (A20)

To treat the above equation, we need the following lemma.

Lemma A3. Let bg0,n be a consistent and asymptotically normal estimator ofg0 2 Rp(k+ 1) . Let
f s(n)gn� 1 be a sequence of positive integers such thatn/ s(n) tends to0 asn �! + ¥ . For r 0 2 Rp

andb 2 Rp(k+ 1) , bg0,s(n) is asymptotically in the tangent spaceeTn to the curveP n(r , g, b) at bg0,n,
de�ned as follows:

eTn =
n

y 2 Rp(k+ 1)
.

P n(r 0, y, b) = P n(r 0, bg0,n, b) + ( y � bg0,n)> ¶gP n(r 0, bg0,n, b)
o

.

Proof. Writing a second-order Taylor expansion of P n(r 0, bg0,n, b) in a neighborhood of
bg0,n, for some ebg0,s(n) lying between bg0,s(n) and bg0,n, we obtain

P n(r 0, bg0,s(n) , b) = P n(r 0, bg0,n, b) +
�

bg0,s(n) � bg0,n

� >
¶gP n(r 0, bg0,n, b)

+
1
2

�
bg0,s(n) � bg0,n

�
¶2

gP n(r 0, ebg0,s(n) , b)
�

bg0,s(n) � bg0,n

�
.

To prove that, as n �! + ¥ , bg0,n belongs to eTn, it suf�ces to show that

�
bg0,s(n) � bg0,n

� >
¶2

gP n(r 0, ebg0,s(n) , b)
�

bg0,s(n) � bg0,n

�
= oP(1).
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Then, we study the asymptotic distribution of
p

n
�

bg0,s(n) � bg0,n

�
. By adding and subtract-

ing appropriate terms, we obtain

p
n( bg0,s(n) � bg0,n) =

q
s(n)

�
bg0,s(n) � g0

� r
n

s(n)
+

p
n(g0 � bg0,n)

= oP(1) +
p

n(g0 � bg0,n).

It is easy to see that, asn �! + ¥ ,
p

n( bg0,s(n) � bg0,n) has the same distribution as
p

n(g0 � bg0,n) and then,
p

n( bg0,s(n) � bg0,n) converges in distribution to a normal ran-
dom vector.

To prove that
�

bg0,s(n) � bg0,n

�
¶2

gP n(r 0, ebg0,s(n) , b)
�

bg0,s(n) � bg0,n

�
= oP(1), it suf�ces to

show that ¶2
gP n(r 0, ebg0,s(n) , b)/

p
n converges in probability to a random vector.

Now, we write

1
p

n
¶2

gP n(r 0, ebg0,s(n) , b) = c1,n(r 0, ebg0,s(n) , b) � c2,n(r 0, ebg0,s(n) , b)

� c3,n(r 0, ebg0,s(n) , b) + c4,n(r 0, ebg0,s(n) , b),

where f s(n)gn� 1 stands for a sequence of positive integers satisfying n/ s(n) �! 0 as
n �! + ¥ , bg0,n is an asymptotically normal estimator of g0 and ebg0,s(n) lies between bg0,s(n)
and g0.

Previously, we proved that


 ¶2

gP n(r 0, eeg0,n, b)




p(k+ 1)
/

p
n converges in probability

to a positive random variable where eeg0,n lies between bg0,n and g0. Following the same

techniques, we can prove that the sequence


 ¶2

gP n(r 0, ebg0,s(n) , b)




p(k+ 1)
/

p
n converges in

probability to a positive random variable, where ebg0,s(n) lies between bg0,s(n) and g0.
It results that

�
bg0,s(n) � bg0,n

� >
¶2

gP n(r 0, ebg0,s(n) , b)
�

bg0,s(n) � bg0,n

�
= oP(1).

It follows from Lemma A3 that, as n �! + ¥ , bg0,s(n) belongs to the tangent space eTn.
Replacing y by bg0,s(n) , we obtain

P n(r 0, bg0,s(n) , b) = P n(r 0, bg0,n, b) + ( bg0,s(n) � bg0,n)> ¶gP n(r 0, bg0,n, b) + oP(1)

Recalling (A20), we obtain

P n(r 0, g0, b) = P n(r 0, bg0,s(n) , b) + oP(1).

Now we need the following lemma.

Lemma A4. Assume that (A1)–(A10), (B1)–(B5) and (B0
1)–(B0

3) hold. Letf bg0,ngn� 1 be a sequence
of consistent and asymptotically normal estimators ofg0. Let s(n) be any sequence of positive
integers such thatn/ s(n) �! 0 asn �! + ¥ . Then, for anyb 2 Rp(k+ 1) , underH0, asn �! + ¥ ,
we have

P n(r n, g0, b) = P n(r n, bg0,s(n) , b) + oP(1).

Proof. Following the same techniques as above and by applying Taylor expansion of
P n(r n, g0, b) in a neighborhood of bg0,n, for some eeg0,n lying between g0 and bg0,n, we obtain

P n(r n, g0, b) = P n(r n, bg0,n, b) � ( bg0,n � g0)> ¶gP n(r n, bg0,n, b)
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+
1
2

( bg0,n � g0)> ¶2
gP n(r n, eeg0,n, b)( bg0,n � g0).

We have
�
�
� ( bg0,n � g0)> ¶2

gP n(r n, eeg0,n, b)( bg0,n � g0)
�
�
�

�

 p

n( bg0,n � g0)



p(k+ 1) �
1

p
n



 ¶2

gP n(r n, eeg0,n, b)
�
�
� jj p(k+ 1)kbg0,n � g0j

�
�
�
�
�
�
p(k+ 1)

.

Recall that, under H0,
p

n( bg0,n � g0) converges to a �nite Gaussian random vector and,
almost surely, as n �! + ¥ , eg0,n � g0 tends to 0 2 Rp(k+ 1) . We study the convergence of
¶2

gP n(r n, eeg0,n, b)/
p

n.
Based on the proof of Lemma A2, we have

1
p

n
¶2

gP n(r n, eeg0,n, b)

=
1
n

n

å
t= 1

1
V (Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h¶2
g Tgm,h(r n, eeg0,n,Xt � 1)f f [#t (r n, eeg0,n)]

�
2
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h(¶g Tgm,h(r n, eeg0,n,Xt � 1))( ¶g T(r n, eeg0,n)) >

� f 0
f [#t (r n, eeg0,n)] �

1
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,hTgm,h(r n, eeg0,n,Xt � 1)

� ¶2
g T(r n, eeg0,n,Xt � 1)f 0

f [#t (r n, eeg0,n)] +
1
n

n

å
t= 1

1
V2(Xt � 1)

k+ 1

å
m= 1

p

å
h= 1

bm,h

� Tgm,h(r n, eeg0,n,Xt � 1)
�

¶g T(r n, eeg0,n,Xt � 1)
��

¶g T(r n, eeg0,n,Xt � 1)
� >

� f 00
f [#t (r n, eeg0,n)].

Based on the assumptions (B1)–(B5), (B0
1)–(B0

3) and using the same techniques, we can
prove that (1/

p
n) � jjj ¶2

gP n(r n, eeg0,n, b)jjj p(k+ 1) converges to a �nite positive number.

Thus, (1/
p

n) � jjj ¶2
gP n(r n, eeg0,n, b)jjj p(k+ 1) converges almost surely to a �nite random

positive number.
From these results, we can conclude that

( bg0,n � g0)> ¶2
gP n(r n, eeg0,n, b)( bg0,n � g0) = oP(1).

Then, we can write

P n(r n, g0, b) = P n(r n, bg0,n, b) + (g0 � bg0,n)> ¶gP n(r n, bg0,n, b) + oP(1).

Adding and subtracting appropriate terms, we obtain

P n(r n, g0, b) = P n(r n, bg0,n, b) +
�

g0 � bg0,s(n)

� >
¶gP n(r n, bg0,n, b)

+
�

bg0,s(n) � bg0,n

� >
¶gP n(r n, bg0,n, b) + oP(1).

By the assumptions (B1)–(B5) and by the ergodic theorem, we can prove that

P n(r n, g0, b) = P n(r n, bg0,s(n) , b) + oP(1),



Mathematics2024, 12, 2092 38 of 40

where f s(n)g)n � 1 is a sequence of positive integers such that, asn �! + ¥ , n/ s(n) �! 0.
Returning to the proof of Proposition 3, and using Lemma A2, we have

P n(r n, g0, b) = P n(r n, bg0,s(n) , b) + oP(1).

We can write

P n(r s(n) , g0, b) = P n(r s(n) , bg0,s(n) , b) + oP(1).

From Proposition 2, we have

P n(r 0, g0, b) = P n(r s(n) , g0, b) + oP(1),

and

P n(r 0, g0, b) � P n(r s(n) , gs(n) , b) = P n(r 0, g0, b) � P n(r s(n) , g0, b) + oP(1).

Finally, using the above results, we can write

P n(r 0, g0, b) = P n(r s(n) , bg0,s(n) , b) + oP(1)

Appendix A.8. Proof of Theorem 4

Appendix A.8.1. Proof of [i]

The test statistic is

Tn(r s(n) , bg0,s(n) , b) =
P n(r s(n) , bg0,s(n) , b)
bJn(r s(n) , bg0,s(n) , b)

.

We proved in Proposition 3 that

P n(r 0, g0, b) = P n(r s(n) , bg0,s(n) , b) + oP(1).

We also proved that, as n �! + ¥ ,

bJn(r s(n) , bg0,s(n) , b) P�! J(r 0, g0, b).

Thus, under H0, asn �! + ¥ , we have

lim
n�! + ¥

bJn(r s(n) , bg0,s(n) , b)

J(r 0, g0, b)
= 1,

and

Tn(r s(n) , bg0,s(n) , b)

=
P n(r 0, g0, b)

bJn(r s(n) , bg0,s(n) , b)
+

1
bJn(r s(n) , bg0,s(n) , b)

� oP(1)

=
P n(r 0, g0, b)
J(r 0, g0, b)

�
J(r 0, g0, b)

bJn(r s(n) , bg0,s(n) , b)
+

1
bJn(r s(n) , bg0,s(n) , b)

� oP(1)

P�! T n(r 0, g0, b).



Mathematics2024, 12, 2092 39 of 40

Appendix A.8.2. Proof of [ii] and [iii]

The convergence of bJn(r s(n) , bg0,s(n) , b) to J(r 0, g0, b) remains true under the local

alternative H (n)
b by contiguity. Then, under H (n)

b and as n �! + ¥ , using Le Cam's third
lemma, we have

Tn(r s(n) , g0, b) =
P n(r s(n) , bg0,s(n) , b)
bJn(r s(n) , bg0,s(n) , b)

D�! N (J(r 0, g0, b), 1).

Then, we can say that the power of the test remains the same.
For more proof details, see [36].
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