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Abstract

IMPORTANCE The associations of exposure to fine particulate matter (PM2.5) and its constituents
with spontaneous preterm birth (sPTB) remain understudied. Identifying subpopulations at
increased risk characterized by socioeconomic status and other environmental factors is critical for
targeted interventions.

OBJECTIVE To examine associations of PM2.5 and its constituents with sPTB.

DESIGN, SETTING, AND PARTICIPANTS This population-based retrospective cohort study was
conducted from 2008 to 2018 within a large integrated health care system, Kaiser Permanente
Southern California. Singleton live births with recorded residential information of pregnant
individuals during pregnancy were included. Data were analyzed from December 2023 to
March 2024.

EXPOSURES Daily total PM2.5 concentrations and monthly data on 5 PM2.5 constituents (sulfate,
nitrate, ammonium, organic matter, and black carbon) in California were assessed, and mean
exposures to these pollutants during pregnancy and by trimester were calculated. Exposures to total
green space, trees, low-lying vegetation, and grass were estimated using street view images.
Wildfire-related exposure was measured by the mean concentration of wildfire-specific PM2.5 during
pregnancy. Additionally, the mean exposure to daily maximum temperature during pregnancy was
calculated.

MAIN OUTCOMES AND MEASURES The primary outcome was sPTB identified through a natural
language processing algorithm. Discrete-time survival models were used to estimate associations of
total PM2.5 concentration and its 5 constituents with sPTB. Interaction terms were used to examine
the effect modification by race and ethnicity, educational attainment, household income, and
exposures to green space, wildfire smoke, and temperature.

RESULTS Among 409 037 births (mean [SD] age of mothers at delivery, 30.3 [5.8] years), there
were positive associations of PM2.5, black carbon, nitrate, and sulfate with sPTB. Adjusted odds ratios
(aORs) per IQR increase were 1.15 (95% CI, 1.12-1.18; P < .001) for PM2.5 (IQR, 2.76 μg/m3), 1.15 (95%
CI, 1.11-1.20; P < .001) for black carbon (IQR, 1.05 μg/m3), 1.09 (95% CI, 1.06-1.13; P < .001) for nitrate
(IQR, 0.93 μg/m3), and 1.06 (95% CI, 1.03-1.09; P < .001) for sulfate (IQR, 0.40 μg/m3) over the entire
pregnancy. The second trimester was the most susceptible window; for example, aORs for total
PM2.5 concentration were 1.07 (95% CI, 1.05-1.09; P < .001) in the first, 1.10 (95% CI, 1.08-1.12;
P < .001) in the second, and 1.09 (95% CI, 1.07-1.11; P < .001) in the third trimester. Significantly
higher aORs were observed among individuals with lower educational attainment (eg, less than
college: aOR, 1.16; 95% CI, 1.12-1.21 vs college [�4 years]: aOR, 1.10; 95% CI, 1.06-1.14; P = .03) or
income (<50th percentile: aOR, 1.17; 95% CI, 1.14-1.21 vs �50th percentile: aOR, 1.12; 95% CI,
1.09-1.16; P = .02) or who were exposed to limited green space (<50th percentile: aOR, 1.19; 95% CI,
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1.15-1.23 vs �50th percentile: aOR, 1.12; 95% CI, 1.09-1.15; P = .003), more wildfire smoke (�50th
percentile: aOR, 1.19; 95% CI, 1.16-1.23 vs <50th percentile: aOR, 1.13; 95% CI, 1.09-1.16; P = .009), or
extreme heat (aOR, 1.51; 95% CI, 1.42-1.59 vs mild temperature: aOR, 1.11; 95% CI, 1.09-1.14; P < .001).

CONCLUSIONS AND RELEVANCE In this study, exposures to PM2.5 and specific PM2.5 constituents
during pregnancy were associated with increased odds of sPTB. Socioeconomic status and other
environmental exposures modified this association.

JAMA Network Open. 2024;7(11):e2444593. doi:10.1001/jamanetworkopen.2024.44593

Introduction

Preterm birth (PTB) is an important obstetrical event complicating approximately 11% of births
worldwide and a leading cause of mortality in children younger than 5 years.1-3 It can be commonly
categorized into spontaneous PTB (sPTB; approximately 60%-70% of all PTBs) and iatrogenic PTB
(iPTB; approximately 30%-40% of all PTBs) based on different underlying mechanisms.4,5 Medical
interventions, including labor induction or prelabor cesarean delivery, can result in iPTB, typically due
to conditions that threaten maternal or fetal well-being, such as preeclampsia or eclampsia, placental
abruption, or intrauterine growth restriction.6,7 Preterm births that follow spontaneous labor or
preterm premature rupture of membranes are called sPTB, which is considered a complex syndrome
resulting from 4 major pathogenic pathways: infection or inflammation, decidual hemorrhage,
uterine overdistension, and premature activation of the maternal or fetal hypothalamic-pituitary-
adrenal axis due to stress.4,8,9 The prediction and prevention of sPTB remain challenging because
causes leading to the disruption of uterine quiescence and cervical changes (with or without rupture
of membranes) are still not fully understood.10,11 As the major source of prematurity in contemporary
obstetrics, sPTB has a significant impact on neonatal morbidity and mortality rates. Previous
research has highlighted the importance of identifying and using risk factors associated with sPTB to
inform early interventions and has associated various sociodemographic, nutritional, environmental,
and genetic factors with the risk of sPTB.10,12-14

Exposure to PM2.5 and its components (eg, black carbon, nitrate, and sulfate) has been
associated with several pathophysiological pathways, such as oxidative stress, inflammation, and
activation of the hypothalamic-pituitary-adrenal axis,15-19 which may directly lead to sPTB. However,
studies on PM2.5 exposure and sPTB remain limited20-25 given that differentiating PTB subtypes in
previous investigations has been challenging owing to the lack of medical records for information on
preterm labor, rupture of membranes, or cervical incompetence.25,26 In addition, many studies may
lack sufficient cases for a precise analysis of sPTB, resulting in reduced statistical power when
focusing exclusively on this outcome.27 Given that ambient PM2.5 has been identified as a leading
environmental risk factor for various health outcomes, it is crucial to understand its association with
the risk of sPTB based on research with a relatively large sample size, which can offer population-
based insights into the prevention of sPTB. Furthermore, the chemical composition of PM2.5 can vary
by region due to different pollution sources, and this variation contributes to different toxic effects
associated with PM2.5 and discrepancies across studies. Examining the association of specific PM2.5

constituents with sPTB may help enhance the understanding of PM2.5 toxic effects and provide a
reference for local emission control.28,29

Existing literature has reported persistent socioeconomic, racial, and ethnic disparities in the
rate of PTB in the US, where significantly higher rates were found among Black individuals and those
with poverty or limited education.1,5,30 Individuals with a lower socioeconomic level may experience
greater social stressors and underlying health problems, thereby increasing their level of health risks
associated with air pollution.31 Investigating how these factors may modify the risk of sPTB
associated with PM2.5 exposure may help identify populations at increased risk and promote health
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equity. Moreover, it has been suggested that green space exposure is associated with reduced health
risks associated with air pollution32,33; however, its role in modifying the association with pregnancy
outcomes has been less studied.34,35 Most studies used the normalized difference vegetation index
(NDVI) to measure total green space exposure without distinguishing vegetation types.26,32,36 Given
that trees and other vegetation (eg, bushes and grass) have been associated with health benefits
through different pathways,37-39 identifying the effect modification by vegetation type may help
establish a more effective strategy for mitigating health risks associated with PM2.5. In addition,
climate change is exacerbating health-threatening conditions, such as extreme heat and wildfires,
which may particularly affect pregnant individuals owing to the physiological and psychological
changes during pregnancy.40,41 Examining the effect modification of these climate-sensitive
exposures on the association between PM2.5 levels and sPTB may raise awareness and encourage the
adoption of self-protection measures in a changing climate.

We conducted a retrospective cohort study in Southern California to examine associations of
exposures to total PM2.5 and PM2.5 constituents during pregnancy with sPTB. Furthermore, we
examined the effect modification by race and ethnicity, socioeconomic status, and other
environmental exposures (ie, green space, wildfire smoke, and temperature).

Methods

Study Population
We identified 429 839 pregnancies with delivery of singleton live births from January 1, 2008, to
December 31, 2018, at Kaiser Permanente Southern California health care system (KPSC) (eFigure 1
and eMethods in Supplement 1). Detailed information for each pregnancy was provided in KPSC
electronic health records, including sociodemographic characteristics, medical and obstetric
histories, birth records, residential histories, and health-related behaviors. Data on race and ethnicity
were based on a combination of administrative and patient self-reports,42,43 and we reported the
data given varying rates of sPTB across different racial and ethnic groups.4 Race and ethnicity
categories included Asian, Black, Hispanic, non-Hispanic White, and other (including American Indian
or Alaska Native, Pacific Islander, and multiple races or ethnicities). Race and ethnicity were obtained
in the same question. This study followed the Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) reporting guideline and was approved by the Institutional Review Boards
of KPSC and the University of California, Irvine, with an exemption for informed consent because the
research was considered minimal risk for participants.

Outcome Ascertainment
Preterm birth was defined as a live birth that occurs after 20 completed weeks and before 37
completed weeks of gestation. Gestational age was primarily estimated by first-trimester
ultrasonography, and for a small minority, by the last menstrual period with confirmation from
second-trimester ultrasonography (eMethods in Supplement 1).31 We used a natural language
processing algorithm to extract information on preterm labor visits from electronic health records.44

The algorithm found key terms related to preterm labor triage and evaluation, such as terms referring
to fetal fibronectin tests and transvaginal ultrasonography evaluation of cervical length.4,45-47 Its
performance has been validated with a 97% positive predictive value.44 To ascertain sPTB, we first
identified all preterm labor visits. Then, we defined sPTB as a preterm delivery that follows the
spontaneous onset of labor, is not indicated by concomitant pregnancy complications, and occurs
within 7 days of the last preterm labor visit.48-50 All remaining PTBs with medical indications, such as
preeclampsia or eclampsia, were grouped as iPTBs.

Air Pollution Exposure Assessment
We obtained daily total PM2.5 concentrations during 2007 to 2018 at the census tract level from a
validated ensemble model (eFigures 2 and 3 in Supplement 1),51 which incorporated multiple
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machine-learning algorithms with various explanatory variables. Then, we obtained monthly
concentrations of 5 PM2.5 constituents (sulfate, nitrate, ammonium, organic matter, and black
carbon) during 2007 to 201729,52,53 from the publicly available outputs of a geoscience-derived
model at a spatial resolution of 1 km × 1 km.54,55 We calculated mean exposures to total PM2.5 and
PM2.5 constituents during the entire pregnancy and in each trimester for each individual based on
their residential history and geocoded addresses during pregnancy. Pregnancies with inadequate
residential data (<75% of completeness during pregnancy) were excluded (20 802 of 429 839
pregnancies [4.84%]).31 The performance of these 2 models and the exclusion criteria are detailed in
the eMethods in Supplement 1.

To examine the effect modification by wildfire-related exposure, we estimated the mean
exposure to wildfire-specific PM2.5 during the entire pregnancy based on the ensemble model
described previously.51,56 Briefly, nonwildfire PM2.5 concentrations that would have been observed if
there had been no wildfires were estimated by implementing a multiple imputation approach.
Wildfire-specific PM2.5 concentrations were estimated as the difference between total and
nonwildfire PM2.5 concentrations.

Green Space Exposure Assessment
We obtained street view green space exposure from a validated machine-learning model.38,57 We
requested high-resolution street view images from Microsoft Bing Maps Application Programming
Interface and estimated the proportion of greenery pixels in each image. We distinguished 3 types of
vegetation, including trees, low-lying vegetation (eg, shrubs and bushes), and grass. Exposures to
total green space and each type of vegetation were estimated by finding the mean proportion of
corresponding greenery pixels in all street view images within a 1 km radius surrounding the
residential area at delivery. Further details can be found in the eMethods in Supplement 1.

Temperature Exposure Assessment
We obtained daily maximum temperature data for Southern California from 2007 to 2018 at a 4
km × 4 km resolution from the gridMET dataset.58,59 We calculated the mean exposure to daily
maximum temperature during pregnancy for each individual based on their geocoded home
addresses and accounting for residential mobility. The exposure was further categorized as extreme
cold (<10th percentile), mild temperature (10th to 90th percentile), and extreme heat (�90th
percentile).60-62

Statistical Analysis
We provide summary statistics of sociodemographics and environmental exposures of the study
population. We measured correlations between environmental exposures using Pearson correlation
coefficients (eResults and eTables 1 and 2 in Supplement 1). We estimated associations of exposures
to total PM2.5 and PM2.5 constituents with sPTB in the entire pregnancy and by trimester. Discrete-
time survival models with logit link63-65 were applied to accommodate varying lengths of
gestations,66-68 and births after 37 completed weeks of gestation were censored. We applied a
quantile-based g computation approach that can leverage correlations among exposures69,70 to
examine the joint association of different PM2.5 constituents as a mixture. Constituents associated
with sPTB in the main model were further included in the mixture analysis to quantify their
contributions to the overall association.29,53 We fitted the county of residence as a random effect to
account for potential spatial clustering29,52,53 and adjusted for important confounders a priori based
on existing studies on air pollution and PTB subtypes22-24 and literature on risk factors associated
with sPTB,5,9,13,14 including age, race and ethnicity, educational attainment, median household
income, prepregnancy body mass index (calculated as weight in kilograms divided by height in
meters squared), season of conception, and year of delivery. We considered more confounders (eg,
temperature, insurance type, parity, smoking status, and some preexisting medical conditions [ie,
diabetes and chronic hypertension]) in the sensitivity analysis to check the robustness of our results.
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We reported odds ratios (ORs) of sPTB with corresponding 95% CIs per IQR increase in each
exposure.

We examined the effect modification of several factors on the association between PM2.5 and
sPTB by fitting separate models with interaction terms and adjusting each model for all covariates
specified in the main analysis and the respective effect modifier. These factors included
sociodemographic characteristics, such as race and ethnicity, educational attainment, and median
household income. We also considered exposures to various types of green space (ie, total green
space, trees, low-lying vegetation, and grass), wildfire smoke, and temperature. To quantify the
effect modification by wildfire smoke exposure, we examined its interaction with nonwildfire PM2.5

exposure instead of the total PM2.5 exposure.
To examine whether associations of total PM2.5 concentration with sPTB and iPTB were

different, we applied iPTB as a secondary outcome. In addition, we conducted sensitivity analyses to
evaluate the robustness of our findings, such as restricting the population to consider only the first
birth of each individual in the cohort, adjusting for other ambient pollutants (eg, nitrogen dioxide and
ozone), estimating PM2.5 exposure based on other data sources, estimating green space exposure
based on NDVI and tree canopy cover measurements, and applying propensity score matching
(eMethods in Supplement 1). We also report risk differences as an absolute measure of
association.71-73 A 2-sided P value <.05 was considered statistically significant. Analyses were
completed using SAS statistical software version 9.4 (SAS Institute) and R statistical software version
4.1.3 (R Project for Statistical Computing). Adjustment for multiple comparisons was not made for
the secondary outcome or sensitivity analyses, and those results should be interpreted as
exploratory. Data were analyzed from December 2023 to March 2024.

Results

We included 409 037 singleton live births (mean [SD] age of the study population at delivery, 30.3
[5.8] years; 50 978 among Asian [12.46%], 31 481 among Black [7.70%], 208 615 among Hispanic
[51.00%], and 107 237 among White [26.22%] mothers) after excluding 20 802 births with
inadequate residential data during pregnancy (Table 1). There were 19 341 sPTBs (4.73%) and 11 254
iPTBs (2.75%). Mothers with sPTB and iPTB were more likely to be older (aged �35 years), self-
identify as Black or Asian, have a lower educational attainment, be overweight, have pregestational
diabetes and hypertension, and have a history of PTB. The mean (SD) level of exposure to total PM2.5

during pregnancy was 11.40 (2.34) μg/m3 and 11.54 (2.04) μg/m3 among all births and sPTBs,
respectively (Table 2).

Associations of Exposure to Total PM2.5 and PM2.5 Constituents With sPTB
For associations during the entire pregnancy, the adjusted OR (aOR) per IQR increase (2.76 μg/m3) in
total PM2.5 exposure was 1.15 (95% CI, 1.12-1.18; P < .001) (Table 3). Per 1 μg/m3 increase, the aOR was
1.05 (95% CI, 1.04-1.06; P < .001). Associations were also observed per IQR increase for four PM2.5

constituents: sulfate (aOR, 1.06; 95% CI, 1.03-1.09; P < .001; IQR, 0.40 μg/m3), nitrate (aOR, 1.09;
95% CI, 1.06-1.13; P < .001; IQR, 0.93 μg/m3), organic matter (aOR, 1.05; 95% CI, 1.02-1.08; P < .001;
IQR, 1.82 μg/m3), and black carbon, which had the highest increase in odds (aOR, 1.15; 95% CI, 1.11-
1.20; P < .001; IQR, 1.05 μg/m3). Consistently higher aORs in association of total PM2.5 and PM2.5

constituents with sPTB were shown during the second trimester. For example, aORs for total PM2.5

concentration were 1.07 (95% CI, 1.05-1.09; P < .001) in the first, 1.10 (95% CI, 1.08-1.12; P < .001) in
the second, and 1.09 (95% CI, 1.07-1.11; P < .001) in the third trimester.

A quartile increase in the mixture consisting of PM2.5 sulfate, nitrate, organic matter, and black
carbon during pregnancy was associated with an increase in the odds of sPTB (aOR, 1.09; 95% CI,
1.06-1.13; P < .001) (Table 4). PM2.5 black carbon, nitrate, and sulfate contributed 37.73%, 34.34%,
and 27.93%, respectively, to the positive association.
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Effect Modification by Sociodemographic Characteristics
and Other Environmental Exposures
Individuals with lower educational attainment (eg, less than college: aOR, 1.16; 95% CI, 1.12-1.21 vs
college [�4 years]: aOR, 1.10; 95% CI, 1.06-1.14; P = .03) or median household income (<50th

Table 1. Study Population Characteristics

Maternal characteristic

Births, No. (%)
Total
(N = 409 037)

Term births
(n = 378 442)

sPTB
(n = 19 341)

iPTB
(n = 11 254)

Age, y

<25 78 226 (19.12) 72 633 (19.19) 3592 (18.57) 2001 (17.78)

25-34 242 513 (59.29) 225 772 (59.66) 10 793 (55.80) 5948 (52.85)

≥35 88 298 (21.59) 80 037 (21.15) 4956 (25.62) 3305 (29.37)

Race and ethnicitya

Asian 50 978 (12.46) 46 767 (12.36) 2901 (15.00) 1310 (11.64)

Black 31 481 (7.70) 28 365 (7.50) 1930 (9.98) 1186 (10.54)

Hispanic 208 615 (51.00) 192 646 (50.91) 9944 (51.41) 6025 (53.54)

Non-Hispanic White 107 237 (26.22) 100 766 (26.63) 4069 (21.04) 2402 (21.34)

Otherb 10 684 (2.61) 9857 (2.60) 497 (2.57) 330 (2.93)

Missing 42 (0.01) 41 (0.01) 0 1 (0.01)

Educational attainment

Less than college 126 450 (30.91) 116 613 (30.81) 6078 (31.43) 3759 (33.40)

College (<4 y) 127 463 (31.16) 117 387 (31.02) 6302 (32.58) 3774 (33.53)

College (≥4 y) or higher 147 134 (35.97) 137 132 (36.24) 6569 (33.96) 3433 (30.50)

Missing 7990 (1.95) 7310 (1.93) 392 (2.03) 288 (2.56)

Median household income, $

Mean (SD) 59 771 (21 818) 59 865 (21 819) 59 277 (22 038) 57 472 (21 234)

Missing 1254 (0.31) 1150 (0.30) 67 (0.35) 37 (0.33)

Prepregnancy BMI

Underweight (<18.5) 9743 (2.38) 8928 (2.36) 557 (2.88) 258 (2.29)

Normal weight (18.5-24.9) 173 391 (42.39) 162 118 (42.84) 7777 (40.21) 3496 (31.06)

Overweight (25.0-29.9) 114 457 (27.98) 105 883 (27.98) 5406 (27.95) 3168 (28.15)

Obesity (≥30.0) 109 297 (26.72) 99 544 (26.30) 5496 (28.42) 4257 (37.83)

Missing 2149 (0.53) 1969 (0.52) 105 (0.54) 75 (0.67)

Season of conception

Cool (November to April) 208 523 (50.98) 192 898 (50.97) 9978 (51.59) 5647 (50.18)

Warm (May to October) 200 514 (49.02) 185 544 (49.03) 9363 (48.41) 5607 (49.82)

Insurance type

Medicaid 38 652 (9.45) 35 489 (9.38) 2104 (10.88) 1059 (9.41)

Other 363 469 (88.86) 336 551 (88.93) 16 969 (87.74) 9949 (88.40)

Missing 6916 (1.69) 6402 (1.69) 268 (1.39) 246 (2.19)

Parity

Primiparous 167 283 (40.90) 154 467 (40.82) 7990 (41.31) 4826 (42.88)

Multiparous 241 212 (58.97) 223 514 (59.06) 11 295 (58.40) 6403 (56.90)

Missing 542 (0.13) 461 (0.12) 56 (0.29) 25 (0.22)

Smoking status

Never smoker 340 517 (83.25) 315 282 (83.31) 15 995 (82.70) 9240 (82.10)

Past smoker 47 447 (11.60) 43 840 (11.58) 2275 (11.76) 1332 (11.84)

Smoker during pregnancy 21 038 (5.14) 19 292 (5.10) 1069 (5.53) 677 (6.02)

Missing 35 (0.01) 28 (0.01) 2 (0.01) 5 (0.04)

Medical conditions

Pre-existing diabetes 5424 (1.33) 4244 (1.12) 553 (2.86) 627 (5.57)

Chronic hypertension 13 952 (3.41) 11 157 (2.95) 1107 (5.72) 1688 (15.00)

History of PTB 8819 (2.16) 6683 (1.77) 1403 (7.25) 733 (6.51)

Abbreviations: BMI, body mass index (calculated as
weight in kilograms divided by height in meters
squared); iPTB, medically indicated preterm birth;
PTB, preterm birth; sPTB, spontaneous preterm birth.
a Race and ethnicity data were based on a combination

of administrative and patient self-reports. The data
were reported given varying risks of sPTB across
different racial and ethnic groups.

b Other included American Indian or Alaska Native,
Pacific Islander, and multiple races or ethnicities,
consolidated owing to a relatively small sample size
of each group in the study.
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percentile: aOR, 1.17; 95% CI, 1.14-1.21 vs �50th percentile: aOR, 1.12; 95% CI, 1.09-1.16; P = .02) had
significantly higher aORs in the association of total PM2.5 concentration with sPTB (Figure). The
increases in odds in the association of total PM2.5 concentration with sPTB were significantly higher
among mothers with lower exposure to total green space (<50th percentile: aOR, 1.19; 95% CI, 1.15-
1.23 vs �50th percentile: aOR, 1.12; 95% CI, 1.09-1.15; P = .003) and trees (<50th percentile: aOR,
1.19; 95% CI, 1.15-1.22 vs �50th percentile: aOR, 1.09; 95% CI, 1.05-1.13; P < .001) but lower among
those with lower exposure to low-lying vegetation. Furthermore, individuals exposed to more

Table 2. Environmental Exposures During Entire Pregnancy

Type

Exposure level, mean (SD)
Total births
(N = 409 037)

Term births
(n = 378 442)

sPTB
(n = 19 341)

iPTB
(n = 11 254)

PM2.5 air pollution, μg/m3a

Total 11.40 (2.34) 11.39 (2.33) 11.54 (2.04) 11.31 (2.96)

Sulfate 1.28 (0.28) 1.28 (0.28) 1.29 (0.31) 1.26 (0.31)

Nitrate 2.41 (0.65) 2.41 (0.65) 2.43 (0.57) 2.41 (0.80)

Ammonium 0.95 (0.32) 0.95 (0.32) 0.96 (0.30) 0.95 (0.36)

Organic matter 5.39 (1.32) 5.39 (1.32) 5.45 (1.29) 5.35 (1.41)

Black carbon 1.49 (0.62) 1.49 (0.62) 1.54 (0.62) 1.42 (0.62)

Nonwildfire 11.28 (2.31) 11.27 (2.31) 11.43 (2.01) 11.17 (2.91)

Wildfire specific 0.12 (0.14) 0.12 (0.14) 0.11 (0.13) 0.14 (0.19)

Green space, %b

Total 25.27 (3.68) 25.28 (3.69) 25.26 (3.53) 24.98 (3.56)

Trees 15.21 (3.79) 15.22 (3.80) 15.31 (3.66) 14.81 (3.70)

Low-lying vegetation 4.69 (1.36) 4.70 (1.36) 4.64 (1.29) 4.72 (1.47)

Grass 5.36 (1.35) 5.36 (1.35) 5.31 (1.28) 5.45 (1.41)

Temperature exposure, °Cc 25.18 (2.30) 25.18 (2.27) 25.09 (2.52) 25.26 (2.86)

Abbreviations: iPTB, medically indicated preterm
birth; PM2.5, particulate matter less than or equal to
2.5 μm; sPTB, spontaneous preterm birth.
a The IQRs of exposures to total PM2.5, sulfate, nitrate,

ammonium, organic matter, black carbon,
nonwildfire PM2.5, and wildfire-specific PM2.5 were
2.76 μg/m3, 0.40 μg/m3, 0.93 μg/m3, 0.40 μg/m3,
1.82 μg/m3, 1.05 μg/m3, 2.75 μg/m3, and 0.15 μg/m3,
respectively.

b The medians of exposures to total PM2.5, wildfire-
specific PM2.5, total green space, trees, low-lying
vegetation, and grass were 11.51 μg/m3, 0.065
μg/m3, 24.56%, 14.68%, 4.44%, and 5.20%,
respectively.

c The mean exposure to daily maximum temperature
during pregnancy was assessed. The 10th and 90th
percentiles were 22.29 °C and 28.24 °C, respectively.

Table 3. Association Per IQR Increase of PM2.5 Exposure With sPTB

PM2.5 exposure

sPTB, aOR (95% CI)a

First trimester Second trimester Third trimester Entire pregnancy
Total 1.07 (1.05-1.09) 1.10 (1.08-1.12) 1.09 (1.07-1.11) 1.15 (1.12-1.18)

Sulfate 1.02 (1.00-1.03) 1.02 (1.01-1.04) 1.00 (0.99-1.01) 1.06 (1.03-1.09)

Nitrate 1.04 (1.01-1.06) 1.06 (1.04-1.09) 1.04 (1.02-1.06) 1.09 (1.06-1.13)

Ammonium 1.01 (0.99-1.03) 1.03 (1.01-1.05) 1.00 (0.98-1.02) 1.03 (1.00-1.06)

Organic matter 1.01 (0.99-1.03) 1.05 (1.03-1.08) 1.03 (1.01-1.05) 1.05 (1.02-1.08)

Black carbon 1.07 (1.04-1.11) 1.13 (1.10-1.17) 1.06 (1.03-1.09) 1.15 (1.11-1.20)

Abbreviations: PM2.5, particulate matter less than or
equal to 2.5 μm; sPTB, spontaneous preterm birth.
a Models were adjusted for age, race and ethnicity,

educational attainment, median household income,
prepregnancy body mass index (calculated as weight
in kilograms divided by height in meters squared),
season of conception, year of delivery, and county of
residence.

Table 4. Association Between Exposure to PM2.5 Mixture During Pregnancy and sPTB Estimated by Quantile-Based g Computation

Association Contribution to association, % Coefficient, βa

Overall coefficientb Overall associationc

β (95% CI) P value OR (95% CI) P value
Positive association with sPTB

0.09 (0.06-0.12) <.001 1.09 (1.06-1.13) <.001

PM2.5 sulfate 27.93

0.09PM2.5 nitrate 34.34

PM2.5 black carbon 37.73

Negative association with sPTB

PM2.5 organic matter 100d −0.005

Abbreviations: OR, odds ratio; PM2.5, particulate matter less than or equal to 2.5 μm;
sPTB, spontaneous preterm birth.
a Models were adjusted for age, race and ethnicity, educational attainment, median

household income, prepregnancy body mass index, season of conception, year of
delivery, and county of residence.

b The sum of coefficients for associations in positive and negative directions.

c The overall association between exposure to PM2.5 mixture and sPTB per quartile
increase in PM2.5 mixture.

d The contribution was 100% given that this was the only pollutant negatively associated
with the outcome in the model.
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wildfire smoke (�50th percentile: aOR, 1.19; 95% CI, 1.16-1.23 vs <50th percentile: aOR, 1.13; 95% CI,
1.09-1.16; P = .009) and extreme heat (aOR, 1.51; 95% CI, 1.42-1.59 vs mild temperature: aOR, 1.11;
95% CI, 1.09-1.14; P < .001) during pregnancy had significantly higher increases in odds of sPTB in the
association with PM2.5 exposure.

Sensitivity Analyses
Results from sensitivity analyses did not change our conclusions (eResults, eFigures 4-6, and
eTables 3-7 in Supplement 1). We observed negative associations between PM2.5 exposure and iPTB
during the entire pregnancy and across 3 trimesters (eResults in Supplement 1). The aOR of iPTB per
IQR increase in total PM2.5 exposure during pregnancy was 0.81 (95% CI, 0.79-0.83; P < .001).

Discussion

Based on a large and diverse birth cohort, this cohort study found that exposure to total PM2.5 during
pregnancy was associated with increased odds of sPTB, with the second trimester identified as the
most susceptible window. A relatively higher increase in odds in the association between PM2.5 black
carbon and sPTB was observed among the 5 PM2.5 constituents of interest, followed by nitrate and
sulfate, while ammonium and organic matter showed minimal increases in odds.

Figure. Fine Particulate Matter Exposure During Pregnancy and Odds of Spontaneous Preterm Birth (sPTB)

0.9 1.4 1.61.2
aOR (95% CI)

1.0

P valueSubgroup
Sociodemographic characteristics
Race and ethnicity

aOR (95% CI)

Green space exposure
Total green space

.28

.03

Asian 1.11 (1.05−1.18)
Black 1.19 (1.12−1.26)
Hispanic 1.16 (1.13−1.20)

Educational attainment

Less than college 1.16 (1.12−1.21)
College (<4 y) 1.17 (1.13−1.21)

Household income level

.02<50th percentile 1.17 (1.14−1.21)
≥50th percentile 1.12 (1.09−1.16)

Trees

<.001<50th percentile 1.19 (1.15−1.22)
≥50th percentile 1.09 (1.05−1.13)

Low-lying vegetation

<.001<50th percentile 1.08 (1.04−1.12)
≥50th percentile 1.17 (1.14−1.20)

.003<50th percentile 1.19 (1.15−1.23)
≥50th percentile 1.12 (1.09−1.15)

Grass

.29<50th percentile 1.13 (1.09−1.17)
≥50th percentile 1.16 (1.12−1.19)

Wildfire smoke exposure

.009<50th percentile 1.13 (1.09−1.16)
≥50th percentile 1.19 (1.16−1.23)

College (≥4 y) or higher 1.10 (1.06−1.14)

Temperature exposure

<.001
Extreme cold (<10th percentile) 1.09 (1.03−1.14)
Mild temperature (10th to 90th percentile) 1.11 (1.09−1.14)
Extreme heat (≥90th percentile) 1.51 (1.42−1.59)

Non-Hispanic White 1.13 (1.09−1.18)

Lower odds
of sPTB

Higher odds 
of sPTB

Models were adjusted for age, race and ethnicity,
educational attainment, median household income,
prepregnancy body mass index (calculated as weight
in kilograms divided by height in meters squared),
season of conception, year of delivery, county of
residence, and respective effect modifier. The P value
is for the interaction term between fine particulate
matter exposure and each effect modifier. aOR
indicates adjusted odds ratio.
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Although prior studies on PM2.5 and sPTB were limited, a 2023 study21 based on a large birth
cohort from 2001 to 2019 in New South Wales, Australia, reported an association between PM2.5

exposure and sPTB during pregnancy (hazard ratio per 1 μg/m3 increase in PM2.5, 1.013; 95% CI,
1.003-1.024). However, the effect size was relatively smaller compared with our results (aOR per 1
μg/m3 increase, 1.05; 95% CI, 1.04-1.06; P < .001). A study from Shanghai, China,25 that examined
trimester-specific associations between PM2.5 and sPTB reported a positive association in the third
trimester. As previously discussed, the underlying mechanisms of the association between PM2.5

exposure and sPTB may include an increase in systematic and placental oxidative stress,
inflammation, placental DNA methylation, and endocrine disruption, which can lead to placental
impairment and affect the structure of chorioamniotic membranes.15,16,74-79 However, 2 studies from
the US reported either null or negative associations of PM2.5 with sPTB.22,23 Discrepancies between
their studies and ours may be due to different study designs, populations, and exposure assessment
approaches.

Although iPTB is clinician initiated and occurs without a natural onset of labor, indications for
iPTB, such as preeclampsia and eclampsia, have been associated with PM2.5 exposure in some
studies.75,80 Therefore, iPTB may be indirectly associated with air pollution, with some indications
potentially lying in the pathway. However, we observed negative associations between PM2.5

exposure and iPTB during pregnancy. Similarly, 2 studies conducted in the US22,23 observed
nonsignificant decreases in the risk of iPTB associated with PM2.5 exposure, where 1 of these studies
reported negative associations of nitrogen dioxide with iPTB.22 Given that iPTB is typically triggered
by medical interventions, the rate and timing of such interventions can vary due to differing medical
practices among clinicians. If these variations in health care practices correlate with fluctuations in
air pollution levels, they could confound the association between environmental pollutants and
iPTB.22 Previous literature has suggested that the pattern of iPTB may be influenced by complex
socioeconomic factors interacting with the medical care system.27 Health care facilities located in
areas with high socioeconomic status and low air pollution may tend to prescribe iPTB more often to
patients at risk.81 Therefore, the observed negative association may be a consequence of residual
confounding due to artificial or external factors not adjusted for in our analysis.4,22 Different results
for sPTB and iPTB underscore a need for differentiating PTB subtypes in future studies.

The presence or absence of labor is critical to distinguish between sPTB and iPTB. Some
previous studies on environmental exposures and PTB failed to isolate sPTB82,83 or identified sPTB
by excluding all cesarean deliveries or by relying on noninduced labor owing to the unavailability of
labor information.84,85 These approaches are likely to misclassify PTB subtypes and bias findings
given that cesarean delivery can occur for medically indicated or elective reasons or occur after a trial
of labor and the terms induction of labor and augmentation of insufficient labor are sometimes used
interchangeably. In addition, some studies22,86,87 have used International Classification of Diseases,
Ninth Revision (ICD-9) codes as proxies to distinguish among PTB subtypes given that indicators for
the presence of labor were not readily available. These studies considered cesarean deliveries
(without codes indicating labor or spontaneous delivery), artificial rupture of membranes, and
induction of labor as iPTB; all other cases were classified as sPTB, which may still lead to
misclassification given that whether labor was present or absent was inferred from these ICD code
proxies. Our study identified individuals triaged for preterm labor evaluation and implemented an
extensive natural language processing algorithm to accurately capture indicators associated with
impending sPTB based on a rich clinical database that can provide information on preterm labor
symptoms, fetal fibronectin tests, and cervical length measurements. Therefore, we provided a more
robust ascertainment of pregnancies resulting in sPTB based on the presence or absence of labor
with corresponding clinical symptoms and restricting the interval between the onset of labor and the
time of delivery.

We observed that individuals without a 4-year college degree or with lower household incomes
were at increased risk of sPTB associated with PM2.5 exposure, highlighting the significant issues of
health inequity among pregnant individuals. Individuals with lower socioeconomic status may have
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more stressful social experiences and live in hazardous physical environments.88-90 In addition, they
may have poorer health status, less access to medical resources, or more adverse health-related
behaviors before and during pregnancy.30,91,92 Targeted and preventive public health interventions
among these subpopulations with high risk may be critical for minimizing the burden of sPTB.

To offer insights for prospective mitigation actions, we examined the effect modification by
street view green space exposure. Compared with satellite-based data, street-level green space may
better reflect actual exposure and illustrate exposure pathways.93,94 Our study found that more total
green space and trees, rather than low-lying vegetation or grass, modified the association between
PM2.5 and sPTB to have a smaller increase in odds. To increase the comparability of our study with
others, we conducted sensitivity analyses for NDVI and tree canopy exposure, and the results also
supported these findings. Some studies have shown more benefits associated with urban trees than
other vegetation types.37-39 Although trees can increase the deposition of particles, they may also
inhibit particle dispersion near emission sources and deteriorate air quality in the area.95 More
in-depth studies considering local conditions and different plant species may help maximize the
benefits of green space.33,96 Moreover, our findings suggest that people exposed to more wildfire
smoke or extreme heat during pregnancy may experience a double jeopardy. Some studies also
reported a higher increase in risk of respiratory diseases associated with ambient PM2.5 among fire-
affected areas or in fire seasons.97-100 The mental stress associated with wildfire events and the
health shock induced by sporadic extreme pollution events during pregnancy may both contribute
to increased risk.101,102

To our knowledge, this is the first study that examined associations of PM2.5 and its constituent
concentrations with sPTB by applying a natural language processing algorithm to define PTB
subtypes reliably. In addition, we examined the effect modification by specific types of green space
to inform a more efficient mitigation strategy. Furthermore, our study benefited from a large sample
size with a socioeconomically diverse population, a comprehensive clinical database, and a more
accurate exposure assessment based on detailed information on prenatal residential mobility.

Limitations
This study has some limitations. First, exposure misclassification was inevitable given that we
estimated individual exposure to PM2.5 based on census tract–level data and did not consider
personal time-activity patterns (eg, time indoors or in the workplace) owing to data unavailability,
which can bias associations in either direction. In sensitivity analyses, we examined associations of
PM2.5 using data from other sources55,103 and found similar results, indicating the robustness of our
conclusions. Second, we considered only 5 major PM2.5 constituents owing to data unavailability.
Associations of other elements attached to PM2.5 (eg, polycyclic aromatic hydrocarbons) may
deserve future investigations. Additionally, we obtained only monthly data on PM2.5 constituents,
which may not be accurate enough and may lead to exposure misclassification. Third, street view
green space data were considered spatial snapshot data that cannot capture temporal variations,
which may lead to exposure misclassification and bias associations in either direction. Fourth, we did
not assess different clinical phenotypes of sPTB.20,104 Future studies with data to distinguish various
phenotypes may promote a deeper understanding of the biological mechanisms.

Conclusions

This cohort study found that more exposure to ambient PM2.5 during pregnancy was associated with
increased odds of sPTB. Individuals with lower socioeconomic status and those exposed to more
wildfire smoke or extreme heat during pregnancy were found to be at greater risk. More green space
exposure, especially trees, may modify the association of PM2.5 concentration with sPTB, with
smaller increases in odds.
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