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Abstract  52 

Non-targeted and suspect screening analysis using liquid chromatography coupled to high-resolution 53 

mass spectrometry (LC-HRMS) holds great promise to comprehensively characterize complex chemical 54 

mixtures. Data preprocessing is a crucial part of the process, however, some limitations are observed: 55 

(i) peak-picking and feature extraction might be incomplete, especially for low abundant compounds, 56 

and (ii) limited reproducibility has been observed between laboratories and software for detected 57 

features and their relative quantification. We first conducted a critical review of existing solutions that 58 

could improve the reproducibility of preprocessing for LC-HRMS. Solutions include providing 59 

repositories and reporting guidelines, open and modular processing workflows, public benchmark 60 

datasets, tools to optimize the data preprocessing and to filter out false positive detections. We then 61 

propose harmonized quality assurance/quality control guidelines that would allow to assess the 62 

sensitivity of feature detection, reproducibility, integration accuracy, precision, accuracy, and 63 

consistency of data preprocessing for human biomonitoring, food and environmental communities.   64 

 65 

 Keywords  66 

High-resolution mass spectrometry, exposomics, metabolomics, non-targeted analysis, suspect 67 
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Abbreviations  78 

NIEHS: National Institute of Environmental Health Sciences 79 

SSA: suspect screening analysis 80 

NTA: non-targeted analysis   81 

GC-HRMS: gas chromatography coupled to high-resolution mass spectrometry  82 

LC-HRMS: liquid chromatography coupled to high-resolution mass spectrometry  83 

CEC: contaminants of emerging concern  84 

QA: quality assurance  85 

QC: quality control  86 

DoE: design of experiment  87 

CV: coefficient of variation  88 

ROI: region of interest  89 

CNN: convolutional neural network  90 

m/z: mass - to -charge ratio 91 
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1. Introduction 104 

Chemical pollution linked to novel entities is one of the nine planetary boundaries and is known to 105 

affect ecosystems and human health. According to a recent inventory, there are more than 350,000 106 

chemicals registered for production and use, with 120,000 of them having substantial gaps in the 107 

chemical identity information1. Consequently, even though large and historical EU and US initiatives 108 

have been implemented to help map human and environmental exposures to chemicals, such as the 109 

European Human Biomonitoring Initiative-HBM4EU2 or the National Institute of Environmental and 110 

Health Sciences initiatives -NIEHS, the number of substances (based on priority lists) for which human 111 

biomonitoring or toxicological data are reported in the literature remains limited.  Moreover, for most 112 

of these chemicals, the knowledge of their environmental fate and exposure of animals and humans 113 

through food and environment are not well characterized. Toxicity data, especially below acute toxicity 114 

levels are also lacking, preventing an efficient risk assessment3.  115 

The potential association between chemical exposure and adverse effects on environmental and 116 

human/animal health is difficult to study because of the lack of knowledge on chemical exposures, 117 

which can be partly explained by the limitations of current monitoring methods. The conventional 118 

approach in monitoring methods is based on targeted quantitative measurements of selected 119 

contaminant/matrix combinations, using internal standard corrections and calibration curves. These 120 

methods are robust, accurate, precise, sensitive and reliable and will provide concentrations for the 121 

contaminants of interest. However they do not offer  a comprehensive overview of the exposure, as 122 

they are limited to a subset of chemicals, often from the same chemical class4. Conversely, SSA (suspect 123 

screening analysis) and NTA (non-targeted analysis) using gas or liquid chromatography coupled to 124 

high resolution mass spectrometry (GC-HRMS or LC-HRMS) offer great promise to characterize the 125 

global exposure and identify chemicals of emerging concern (CECs) 5,6. SSA/NTA studies are qualitative 126 

and aim at determining contaminant detection frequency in a population, and/or at quantifying these 127 

contaminants in a relative way to compare different populations and/or at following the detection and 128 

Jo
urn

al 
Pre-

pro
of



   

 

6 
 

relative quantification of particular compounds over time. This review will focus primarily on SSA/NTA 129 

studies using LC-HRMS.   130 

SSA/NTA workflows typically include study design, sampling and sample preparation (extraction and 131 

concentration of the compounds of interest) followed by separation via LC, HRMS analysis, and finally 132 

data preprocessing followed by identification steps. The data preprocessing step aims at obtaining a 133 

list of detected signals (features) characterized by several pieces of information (e.g., at least by their 134 

m/z, intensity and/or area, and retention time). Depending on the samples investigated, thousands to 135 

tens thousands of features can be detected in a single analysis. They can then be aligned and grouped 136 

across batches and analyses. After the preprocessing step, in SSA, features of interest are annotated  137 

using a list of expected (“suspected”) substances, while prioritization strategies (e.g., multivariate 138 

analysis) followed by identification steps are commonly used for NTA7,8. Although promising, the 139 

development and implementation of workflows for SSA/NTA are still affected by several analytical and 140 

informatics challenges. The large diversity in physicochemical properties hampers the use of only one 141 

analytical set-up to detect all the compounds of interest, whereas the wide dynamic range of 142 

concentrations in the sample prevents the detection of low abundant contaminants due to analytical 143 

interferences5. Furthermore, there are currently no universal solutions available to comprehensively 144 

preprocess the data generated with SSA/NTA. Finally, the annotation step is extremely time-145 

consuming, and often remains incomplete5. This is in part due to the lack of standard compounds, 146 

which impacts the LC-HRMS libraries information available on molecules (MS/MS, retention time, 147 

logD) and consequently undermines the level of confidence in the annotation. Additionally, xenobiotics 148 

are usually detected at low level, and it can be difficult to acquire MS/MS data for those compounds, 149 

decreasing the body of proofs available for annotation. 150 

Regarding the data preprocessing step, feature integration is dependent on the quality of feature 151 

detection, meaning unoptimized feature detection can lead to false positives (type I error, or noise 152 

being reported as a real feature) and/or more concerning false negatives (type II errors, or real peak 153 
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being missed) which can then compromise the exposure assessment9. Overall, the main limitations 154 

observed during the preprocessing step include the fact that: (i) peak-picking and features extraction 155 

might be incomplete, especially for low abundant compounds detection10,11. In that case, it is often 156 

difficult to distinguish actual signals from noise in complex samples with variable noisy backgrounds, 157 

especially if the chromatographic peak does not have a Gaussian shape12. Moreover, default data 158 

preprocessing parameter settings, often optimized for metabolomic application, can lead to significant 159 

false positive or false negative rates for exogenous chemicals present at trace levels 10,11. (ii) 160 

reproducibility issues have been observed between laboratories and software for detected features 161 

and their relative quantification12.  162 

To harmonize the processes across laboratories and ensure that SSA/NTA can provide a list of 163 

confidently detected and integrated features, standardized data preprocessing quality 164 

assurance/quality control procedures (QA/QC) similar to the ones used for validation and monitoring 165 

of analytical methods for target screening are missing. QA aims to define all the activities and processes 166 

to ensure that all quality requirements will be fulfilled. QC describes the individual measures used to 167 

detect non-conformities regarding method performance13. We suggest that these QA/QC procedures 168 

could be applied in SSA and NTA to validate the efficiency, completeness and reproducibility of data 169 

preprocessing methods.  170 

To address the current limitations related to data preprocessing, we first performed a literature review 171 

of existing solutions that aim to improve the reproducibility of data preprocessing and accurate 172 

detection of all true peaks in LC-HRMS data. Then, within the European Partnership for the Assessment 173 

of Risks from Chemicals (PARC), we propose harmonized QA/QC procedures for data preprocessing 174 

relevant for human biomonitoring (HBM), food and environment communities to ensure robust and 175 

reproducible detection of CECs. In this review, we focus on the data preprocessing step of SSA/NTS 176 

workflows using LC-HRMS, while other separation methods, e.g., gas chromatography was out of the 177 

scope of this study. Aspects linked to analytical reproducibility (sample preparation, correction across 178 
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batches) are already established13–16 and will not be discussed in this paper. Furthermore, 179 

normalization, that aims to eliminate unwanted experimental and biological variation, might bring 180 

additional variabilities to the data. This step, further discussed in Misra et  al.17 and Cuevas-181 

Delgado et al.18, was not considered part of the data preprocessing.    182 

2. Raw data pre-processing steps and challenges 183 

Multiple software and tools have been developed for preprocessing LC-HRMS data. The most used 184 

open-source data preprocessing software include XCMS19, MS-DIAL20, MZmine21, OpenMS22, …, while 185 

vendor software includes Compound Discoverer (ThermoFisher), MarkerView (ABSciex), MassHunter 186 

Profinder (Agilent), Metaboscape (Bruker) and Progenesis QI (Waters). A comprehensive overview of 187 

available data preprocessing software can be found in reviews from Misra et al.23, Renner et al.12, 188 

Spicer et al.24, Stanstrup et al.25 and Hollender et al.6. Although the detailed algorithms are different, 189 

the peak-picking or feature extraction strategy is generally based on the same principles: raw data are 190 

first centroided and noise is removed with a simple constant threshold, an adjustable region of interest 191 

(ROI)26, or a more variable and complex intensity threshold. Then, extracted ion chromatograms (EIC) 192 

are generated and a peak-picking algorithm is used to identify features27. Features are grouped across 193 

the measurement sequence and retention time alignment is performed (Figure 1). At this stage, gap 194 

filling can be performed to recover peaks that were not integrated in all analyses to minimize the 195 

number of missing values. Gap filling is discussed further in Müller et al. 28 and Armitage et al29. 196 

 197 

Jo
urn

al 
Pre-

pro
of



   

 

9 
 

 198 

 199 

Figure 1 : Data preprocessing steps for one feature of interest. Raw mass spectrometry profile pattern 200 

is first centroided and noise is removed. For the same feature, a collection of centroided MS spectra 201 

across retention time is obtained. Extracted ion chromatograms are generated. Chromatograms are 202 

grouped across the measurement sequence and retention time alignment is performed. 203 

Parameters for centroiding (smoothing algorithms), peak-picking (m/z error, estimated 204 

chromatographic peak width, signal thresholds), retention time correction (alignment gap penalties) 205 

and grouping algorithms (m/z, retention time deviation and minimum number of detections) are 206 

critical.  Multiple studies, particularly in the field of metabolomics, have shown that using different 207 

parameters for data preprocessing can lead to three major issues27: (i) lack of reproducibility and 208 

substantial differences in the list of all detected and integrated features27
, (ii) suboptimal detection of 209 

low abundant features, even those with a Gaussian chromatographic peak10,30 and (iii) reporting of 210 

some features as multiple artifactual features (peak splitting) or merging of two features into one 211 

because of poor peak shape linked to low abundance or chemical properties31 with algorithms 212 

struggling to locate the local intensity minima32. Examples illustrating common peak-picking issues are 213 

shown in Figure 2. 214 

Jo
urn

al 
Pre-

pro
of



   

 

10 
 

 215 

Figure 2 :  Example of common peak-picking errors: (A) Artifactual splitting of a peak into multiple 216 

features, (B) merging of two peaks into one feature, (C) integration of noise, and (D) missing peak. The 217 

first two issues are generally related to selecting an inadequately low (A) or high (B) peak width value 218 

during the preprocessing step, whereas the last two issues are generally attributable to selecting an 219 

inappropriately low (C) or high (D) noise threshold. 220 

Since data may be acquired in either centroid or profile mode, centroiding is generally only necessary 221 

in the data preprocessing workflow for the latter case. Additionally, centroiding may be performed 222 

after data acquisition on-the-fly by unpublished vendor algorithms with no accessible parameters. To 223 

the best of our knowledge, very few studies evaluating the impact of centroiding on data preprocessing 224 

have been reported33.  225 

Multiple studies have highlighted significant differences in feature detection, with as low as 10% 226 

overlapping features27,34 and up to three times more detected features depending on the 227 

preprocessing software used32,35–37. A recent study from Guo et al. demonstrates variability between 228 

five different preprocessing software regarding the true positive rate (number of true positive features 229 

detected related to the total number of true positive features)38. It is important to acknowledge the 230 
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complexity of comparing detected features across different software, given that each preprocessing 231 

software employs distinct algorithms that may not be implemented in the same sequence. Step by 232 

step comparisons are consequently difficult to interpret. Hohrenk et al.27 demonstrated that this 233 

phenomenon is not only necessarily related to low abundant features, as they also observe only ~10% 234 

overlap between the MZmine, XCMS Online and enviMass preprocessing of wastewater treated 235 

samples for the top 100 most abundant features. Integration is also affected, and Coble et al. have 236 

noted an absolute bias of up to 22% compared to manual integration with the vendor software39.  237 

Variability was also observed in the detection of spiked or standard compounds, with recall rate of 238 

suspect ranging from 64 to 88%27. Li et al. have noted in their measurements and data evaluation of a 239 

mixture of 1,100 compounds that the recall rate ranged from 85 to 95%, but the relative error in 240 

integration ranged from 64 to 99%36. El Abiead et al. have shown that a minimal change in the XCMS 241 

centWave maximum peak width parameters led to an increase in the proportion of missed spiked 242 

compounds from 6 to 93%11. This phenomenon was also noticed by Chaker et al., who observed that 243 

the lack of optimization of data preprocessing software such as XCMS can lead to a false negative rate 244 

of up to 80% for chemicals spiked at low levels in blood10.   245 

Differences have also been observed in statistically significant potential biomarkers. For instance, 246 

Baran reprocessed five untargeted metabolomics datasets from public repositories, and although the 247 

study was not aimed to be exhaustive, the author could detect 50 biologically relevant omissions in 248 

each dataset40. Chen et al. compared three preprocessing software and showed that altogether 14 249 

markers were reported as statistically different, but only two were detected by all software37. Another 250 

study independently performed on the same cancer proteomics dataset reported 17 biomarkers, 251 

where only two were shared between the software approaches41. Li et al. and Horenk et al. also 252 

mentioned the difficulty in matching detected features across samples and/or different processing 253 

software due to failure in m/z and retention alignment27,42.  254 
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To summarize, it appears difficult to be comprehensive in terms of feature detection. Even with 255 

carefully optimized parameters, some compounds that provide reliable signals (including the isotope 256 

profiles) will be missed (i.e. false negatives) by the algorithms10. For a number of software tools, 257 

extensively decreasing the thresholds in an attempt to increase the number of low abundant ions 258 

detected will increase the number of reported false positive features43. It could lead to excessively long 259 

preprocessing times (days to weeks), especiallyfor large scale application (> 1000 samples), where 260 

users will be technically limited by their computers (amount of RAM, hard disk space, numbers of CPU 261 

cores), their cloud based solutions (disk quotas) or the programming of the software, i.e., possibility of 262 

task parallelism 44.  Thus, it is necessary to (i) ensure that data preprocessing is well adapted to the 263 

scientific question and (ii) minimize discrepancies between data processing tools (i.e. via robust 264 

intercomparability using similar datasets or the same dataset processed with different tools or with 265 

different parameters within the same tool). Moreover, beyond data preprocessing using 266 

computational algorithms, differences are also observed in features classification performed by mass 267 

spectrometry experts (true peak or false peak issued from background contamination or electronic 268 

noise)45. It is therefore important to define QA/QC criteria that ensure that the data preprocessing step 269 

will provide the most accurate and reproducible results possible. 270 

3. Initiatives for reproducible data preprocessing  271 

Considering all the different possible analytical set-up and data preprocessing tools, it seems extremely 272 

difficult to propose a harmonized procedure and parametrization for data preprocessing8. However, 273 

to minimize computational irreproducibility between data processing pipelines and maximize the 274 

detection of real peaks, multiple initiatives are proposed: guidelines for the reporting of the data 275 

preprocessing parameters, online repositories to provide access to the data, reproducible 276 

computational workflows and provision of benchmarking datasets. 277 

3.1. Guidelines for data preprocessing reporting 278 
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The first guidelines for NTA data reporting were published in 2007 by the metabolomics community46. 279 

However, Considine et al. reviewed 17 studies published between 2008 and 2014 and concluded that 280 

the guidelines were not followed, as the description of the data processing parameters was too vague, 281 

making it impossible or very difficult to replicate the data preprocessing workflow47. In 2019, in 282 

collaboration with the mQACC consortium, the MERIT project detailed best practice guidelines, 283 

method performance standards, and minimal reporting standards for the acquisition, processing and 284 

statistical analysis to encourage usage of metabolomics analysis in the regulatory toxicology context48. 285 

The 2023 OECD guidelines (number 390) were published with the aim to provide a clear and consistent 286 

framework for reporting each element of an omics study intended for use in regulatory toxicology, 287 

from study design through to data analysis. However, the OECD guidelines only define the workflow 288 

parameters/steps that need to be described. There is no mention of QA/QC for data preprocessing. In 289 

2022, the mQACC consortium13 published a paper with the aim to encourage the reporting of QA/QC 290 

procedures (i.e., description of the criteria used to define acceptable performances and data used to 291 

demonstrate, that the results are indeed acceptable). A framework is provided for consistent reporting 292 

of QA/QC sample information and quality metrics. These guidelines were designed for metabolomics 293 

studies and are not detailed enough for the regulatory context. There are no defined metrics, and the 294 

provided template is organized following the type of QA/QC rather than checked metrics. In parallel, 295 

the NTA Study Reporting Tool was developed by the Benchmarking and Publications for Non-Targeted-296 

Analysis (BP4NTA) working group49. This tool aims to help reviewers to evaluate work submitted for 297 

publication by providing a score to assess the quality of NTA study reporting. More recently, the 298 

Norman study groups has also published guidance for reporting of SSA/NTA data preprocessing 299 

parameters6. 300 

These five documents aim at ensuring that all critical elements of a study are reported. In particular 301 

for data preprocessing, the software and its source, and the peak-picking parameters (m/z tolerances, 302 

intensity thresholds, signal-to-noise ratio, noise filtering settings) are required. MERIT, 303 
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OECD,mQACC,BP4NTA and the Norman study group provide guidelines in terms of QA/QC reporting. 304 

Nonetheless, they do not explicitly cover QA/QC metrics for data preprocessing. 305 

3.2. Data repositories 306 

Like guidelines, data repositories aim to ensure data reproducibility and re-use. Repositories such as 307 

the Metabolomics Workbench50, MetaboLights51 and GNPS integrated within MassIVE52 aim to 308 

standardize data submission and disseminate public MS data, ensuring data reproducibility and re-use. 309 

However, in contrast to the proteomics field53, where metadata for more than 30,000 datasets are 310 

accessible on ProteomeXchange54, only 3998 datasets were available on MetabolomeXchange55. In 311 

2019, the NORMAN Association established the partially public Digital Sample Freezing Platform56 to 312 

provide the first repository tailored for environmental mass spectral data. It currently contains 60 313 

public datasets57. The discrepancies in the availability of public datasets in the different domains might 314 

be explained by the challenging and time-consuming process associated with publication of a small 315 

molecule dataset. In addition, the divergent commitments of the communities on standardization and 316 

reproducibility of research and open science are a strong push factor for the development, operation 317 

and use of common repositories. 318 

3.3.  Processing Workflow 319 

Open source processing workflows, allowing the data processing from preprocessing to statistical 320 

analysis and data annotation, have been developed to increase reproducibility and reduce the 321 

influence of manual intervention on the final results58,59. Modular workflows, where new tools can be 322 

implemented as modules, facilitate usage by the analyst, increases reproducibility and favors data 323 

sharing41. 324 

Platforms gathering all the tools necessary for data processing have been implemented for 325 

Metabolomics. Examples include Workflow4Metabolomics60, MetaboAnalyst61, MZmine21, the 326 

metaRbolomics Toolbox25 and RforMassSpectrometry62. For environmental studies, patRoon63 was 327 

released for comprehensive NTA data processing of environmental samples. Although having these 328 
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different approaches is a great way forward, not all software tools are compatible with the same 329 

platform and choices have to be made. Software interoperability should be improved (e.g., 330 

modularization), where possible, to widen user access to different approaches. 331 

3.4. Benchmark datasets 332 

Benchmark datasets are useful to evaluate the efficiency of data preprocessing and quality of peak-333 

picking64,65. Benchmark datasets can also be used to compare algorithms and better understand the 334 

key parameters66,67. Few benchmark datasets have been published to date for exposomic, food and 335 

environmental sciences. One example is the dataset published by Schulze et al. comprising 4 water 336 

samples analyzed by 21 laboratories on a wide range of instruments and with different analysis 337 

conditions (column, gradients, acquisition mode…)68. Another dataset is a collection of 255,000 338 

extracted ion chromatograms, manually classified as being a peak or not, to improve, for example, 339 

peak picking or gap filling algorithms45. Existing open data repositories can also be a source of 340 

benchmark datasets. For instance, the data preprocessing evaluation tool mzRAPP was assessed using 341 

datasets downloaded from MetaboLights11. Although very useful to develop, improve and evaluate 342 

data preprocessing algorithms, benchmark datasets are not necessarily representative of the nature 343 

of the specific study data, so data preprocessing parameters cannot be optimized.  344 

4. Existing tools to minimize true and false negative peak-picking results 345 

To detect a maximum of true features without introducing too much noise, two types of strategies 346 

have been investigated to date: optimization of the data preprocessing parameters and filtering of the 347 

data after preprocessing. Examples of tools that can be used to finely tune the data preprocessing 348 

parameters and minimize true and false negatives are listed in Table 1. In parallel, preprocessing 349 

software using alternative methods for peak-picking have been explored. 350 

  351 
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Table 1 - List of tools that can be used to finely tune the LC-HRMS data preprocessing parameters and to minimize true and false negatives peak picking. N/A 352 
= not applicable, DoE = design of experiment, QC = quality control, ROI = region of interest, %CV = coefficient of variation, CNN = convolutional neural 353 
network. 354 

Name Authors Method Criteria Comments 
Data preprocessing 

software compatibility 

Tools to optimize data preprocessing 

N/A Eliasson et al.69 Iterative DoE based on dilution 
of pooled QC samples 

Reliability index metrics: evaluate repeatability of 
peaks using correlation between diluted compounds 
and integrated peak area 

 
Any 

N/A Zheng et al.70 Iterative DoE based on dilution 
of pooled QC samples 

Reliability index metrics: evaluate repeatability of 
peaks using correlation between diluted compounds 
and integrated peak area 

Use a Plackett Burman 
design for screening and 
central composite design 
for optimization 

Any 

N/A Kiefer et al.71 
Chaker et al.10 
Dom et al.72 
Hu et al.73 

Iterative DoE based on spiked 
compounds 

Settings are optimized until a defined percentage of 
target spiked compounds are detected. 

Low abundant isotopes of 
internal standards can be 
used to cover low abundant 
peaks 

Any 

N/A Manier et al.74 Iterative DoE Coefficient of variation (%CV) on replicates 
measurements of samples 

 
Any 

XMSanalyzer Uppal et al.75 Merge features from best sets 
of data preprocessing 
parameters 

Coefficient of variation (%CV) on replicates measures 
of samples. Features merge of multiple data 
preprocessing results 

For redundant features, 
best results (highest %CV) 
are kept 

apLCMS26 and XCMS19 

FFRGD Ju et al.76 Merge features from best sets 
of data preprocessing 
parameters 

Fuses features and removes redundancy based on 
graph density 

A graph is defined to cover 
the features generated 
from different software, in 
which nodes and edges 
represent the features and 
their similarity relationships 

XCMS19, Sieve 
(ThermoFisher), 
MZmine21 

N/A Brodsky et al.77 DoE Z-transformed Pearson correlation coefficient 
between intensity profiles of sample replicates 

 
Any  

IPO Libiseller et al.78 Iterative DoE  Peak-picking score based on reliability of a peak. 
Retention time correction score depending on 
deviation to the mean of all peaks after correction. 
Grouping score based on classification of peaks as 
reliable or not 

Reliable peak belongs to an 
isotopologue (13C) 

centWave XCMS19 

Jo
urn

al 
Pre-

pro
of



   

 

17 
 

MetaboAnalystR Pang et al.61 Iterative DoE on ROI (region of 
interest) of raw data enriched 
for real peaks 

Quality score based on the 3 scores of IPO taking into 
account peaks with low-abundant isotopes, Gaussian 
shape of the peaks and coefficient of variation 
between areas of the same compounds  

Reliable peak belongs to an 
isotopologue (13C) 

MetaboAnalystR61 

SLAW Delabriere et al.79 Iterative DoE based on ROI 
(region of interest) of raw data 
containing the most abundant 
features 

Siso = similar to IPO peak-picking score 
Sinteg = based on detection in other sample and %CV 
Salign = retention time deviation across samples 

Use surface models to 
select the best parameters 

OpenMS22, MZmine21, 
XCMS19 

mzRAPP El Abiead et al.11 DoE Completeness and accuracy of integration evaluated 
from a benchmark dataset of compounds for which all 
peaks have been manually integrated 

High-quality of benchmark 
dataset ensured by 
comparing manually 
integrated isotopologue 
ratios to theoretical ones 

Any 

Autotuner McLean et al.80 Direct determination of best 
parameters in a single step, 
using raw data 

Parameters are derived from shape of chromatograms Take a sample of peaks 
from data using slicing 
windows 

centWave XCMS19 and 
Mzmine21 

Paramounter Guo et al.81 Direct determination of best 
parameters in ROIs 

Define universal parameters based on raw data (mass 
tolerance, peak heights, peak width, instrument shift) 

 
Any, but automated 
conversion of 
parameters only for 
XCMS19, MS-Dial20, 
Mzmine21 

EVA Guo et al.82  CNN Recognition of false positive metabolic features with 
poor EIC peak shape 

Training on 25 000 
manually recognized EIC 
peaks and output true or 
false values.  

XCMS19, MS-Dial20, 
OpenMS22, MZmine21 

False positive peak filtering 

N/A Want et al.83 %CV across QCs Filter out features with %CV <30% 
 

Any 

N/A Schiffman et al.84 Adaptative filtering Filters based on blank samples, % of missing values, 
ICC (inter class correlation coefficient)  

Determine the filtering 
thresholds and evaluate the 
effectiveness of the 
filtering based on the 
training set (900 features 
evaluated as high or low 
quality) 

Any 

rFPF Ju et al.85 Entropy index and %CV across 
QCs 

1. Peaks must be reproducible in 80% of the samples. 
2. An entropy index is used to recognize real peaks.  
%CV on the rest should be <30% 

 
Sieve (Thermofisher) 
and XCMS19 
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MS-CleanR Fraisier-Vannier 
et al.86  

Adaptative filtering Filtering based on blank samples, unusual and relative 
Mass Defect, relative standard deviation among 
sample class  

Filters are user tunable MS-DIAL20 

CPC Pirtilla et al.87 Comprehensive Peak 
Characterization after extraction 
in raw data from XCMS tables 

Determine peak area, signal to noise ratio, FWHM, 
width at base and 5,10%  

User based filters settings 
on the peak parameters 

XCMS19 

NeatMS Gloaguen et al.88 Deep learning-based peak filter 
tool (CNN) 

Classify peaks in 3 quality peak classes: high, 
acceptable, poor quality/noise 

Requires a training set 
which can be defined by 
the user 

Any 

N/A Kantz et al.89 Deep neural network Classify peaks as true or false signals Training sets contain 1 304 
manually classified LC 
peaks 

MZmine21 

N/A Kantz et al.89 Multiple logistic regression 
model 

Classify peaks as true or false signals using 6 peak 
shape attributes associated in 59 peak group factors 

Distinguish true from false 
signals 

MZmine21 

MetaClean Chetnik et al.90 Combination of Machine 
learning (AdaBoost algorithm) 
and 22 peak quality metrics 

Classify peaks as pass or fail Performed after initial 
filtering based on %CV 
(<30%).  

XCMS19 

EVA Guo et al.82 CNN  Classify peaks as true or false.  Model was trained on 

25,000 manually 

recognized EIC peaks 

XCMS19, MS-Dial20, 
OpenMS22, MZmine21 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 
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4.1. Tools to optimize data preprocessing 364 

Although the algorithms vary, the most important parameters for peak-picking are m/z errors on 365 

different mass spectra of the same feature, chromatographic peak width (for instance, full width at 366 

half maximum (FWHM), minimum/maximum peak width) and signal thresholds32. For retention time, 367 

alignment gap penalties applied to the alignment score have to be defined. The gap penalty allows 368 

evaluating the deviation from the diagonal of the similarity matrices. Finally, maximum m/z and 369 

retention time deviations, and the minimum number of samples in which a peak should be detected, 370 

must be established81. Altogether, about 10 to 15 parameters must be defined, making the data 371 

processing cumbersome for less experienced users. 372 

Numerous tools are available to help with the selection of the best parameters and to easily optimize 373 

the data preprocessing step. These have primarily been developed for high throughput metabolomics 374 

applications, where reliable detection of the most abundant high-quality peaks is favored. Most of 375 

these tools apply a Design of Experiment (DoE) approach, where one or multiple outputs reflecting the 376 

quality of peak-picking are measured and parameters are adjusted depending on the results. Eliasson 377 

et al.69 first introduced the concept for metabolomics data preprocessing using diluted pooled urine 378 

samples. They proposed to measure the correlation between diluted compounds and integrated peak 379 

area, assuming peak linearity. This method was improved by Zhang and al., who developed a Plackett 380 

Burman design for fast parameters screening and a central composite design for optimization. This 381 

reduces the time needed to determine the best parameter values70. Others suggested monitoring the 382 

coefficient of variation (%CV) on ten replicates to reflect data variability, assuming that an improved 383 

peak integration and lower missing rate correlates with a lower %CV74,75. The optimization of settings 384 

until a defined percentage model of target spiked compounds are detected is quite common in the 385 

environmental field10,71–73.  386 

XMSanalyzer and FFRGD go further by merging the results of different software. For redundant 387 

features, the best results are kept75,76. Brodsky et al. determine the average Pearson correlation 388 
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coefficient between intensity profiles of sample replicates and apply a Z-transformation to obtain a 389 

normal distribution. The algorithm is run multiple times, and the best combination is chosen based on 390 

the Zcorr score77. IPO uses stable 13C isotopic peaks to calculate a peak-picking score by the ratio of 391 

reliable peaks to the total number of peaks minus the number of low abundant peaks. An iterative DoE 392 

process is performed until the optimal processing parameters allowing the best peak-picking score are 393 

determined78. IPO has been shown to work well for abundant features with good LC-MS 394 

performance91. However, it might provide unrealistic parameter settings for low abundant peak 395 

detection or for data with lower LC-MS quality10,81. MetaboAnalystR uses a strategy similar to IPO with 396 

few modifications: instead of using the full dataset, regions of interest enriched for real peaks are 397 

selected. The score includes parameters to consider the Gaussian shape of the peak, as well as the 398 

retention time correction score and grouping score61. SLAW also selects regions with the most 399 

abundant features and uses a score with two terms. The first term is similar to the IPO score, while the 400 

second term considers the reproducible integration across QCs files79. Finally, with mzRAPP, users have 401 

to manually integrate a benchmark dataset of known compounds and manual isotopologue area ratios 402 

are compared to experimental ones to ensure high quality of the benchmark dataset. Recovery and 403 

accuracy of integration using isotopologues are calculated after preprocessing and are used to evaluate 404 

the performance of the data preprocessing procedure11. These methods optimize the parameters in 405 

an undirected way and are data-driven, rather than relying on parameters derived from analytical 406 

chemistry domain experience81. 407 

Other optimization algorithms directly determine the best parameters using the raw data. Autotuner, 408 

for instance, derives parameters by sampling a set of peaks (slicing windows) and by assessing the 409 

shapes of the extracted ion chromatogram80. Paramounter81 also defines universal parameters based 410 

on raw data (mass tolerance, peak heights, peak width and instrument shift). These universal 411 

parameters can then be converted to be used in XCMS, MS-DIAL and MZmine. However, even though 412 

based on direct determination of the best parameters, AutoTuner has been shown to be biased 413 

towards high quality abundant features81. Moreover, if detected, the integration of low abundant 414 
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features is not as reproducible as shown by Chaker et al. (fewer than 20% of serum spiked compounds 415 

have a CV<20%)10. 416 

Finally, machine learning algorithms are emerging. For example, EVA uses CNN (convolutional neural 417 

network) for peak quality evaluation. The model was trained on 25,000 manually annotated peaks 418 

(false and true). This allows the software to recognize false positive metabolic features with poor EIC 419 

peak shape82. The software is compatible with four different software (XCMS, MS-DIAL, OpenMS and 420 

MZmine).  421 

All these optimization algorithms are interesting approaches to choose the best parameters for data 422 

preprocessing. However, they also need to be considered with care as some of these optimization 423 

strategies have been shown to discard low abundant and rare peaks, which are critical when 424 

performing environment, food safety and human biomonitoring analysis10,11,92. 425 

4.2. False positive peak filtering 426 

After data preprocessing, features can be filtered to remove the maximum number of false positive 427 

peaks and only keep the real features. Common strategies to evaluate the quality of a peak and decide 428 

for filtering are based on repeatability metrics, blank subtraction, peak metrics, mass defect and 429 

machine learning. 430 

Repeatability metrics include %CV83 on spiked and/or on all detected compounds, interclass 431 

correlation coefficient (ICC)84, entropy index which allows to evaluate noise85 and percentage of 432 

missing values calculated on repeated injections of the same sample, like pooled QCs. For instance, 433 

Schiffman et al. manually evaluated 900 features as high or low quality, tested multiple filters and 434 

compared the results in terms of high- and low-quality features filtered out84. They concluded that a 435 

data-adaptive filtering outperforms methods based on non-specific thresholds.  436 

Blank subtraction, included for instance in the tool MS-CleanR86, will evaluate background ions and 437 

feature height ratio in samples vs QC.  438 
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Peak metrics are used for instance by the tool CPC, which calculates peak characteristics (peak area, 439 

signal-to-noise ratios, FWHM, width at base, 5% and 10%) and filters out features with no characteristic 440 

peak signatures in the second derivative87. MS-CleanR86 also incorporates mass defects (unusual and 441 

relative mass defect calculation). 442 

Machine learning aims to classify detected peaks as true or false based on a training set of manually 443 

classified peaks (binary classification). Image recognition algorithms, including deep learning88, deep 444 

neural network89 and CNN82 have been used. Other strategies based on boosting have been suggested. 445 

For instance, MetaClean combines machine learning using the AdaBoost algorithm and 22 peak quality 446 

metrics90. A simpler multiple logistic model, including six peak shape attributes associated with 59 peak 447 

group factors, has been shown to provide reasonable results, although it did not perform as well as an 448 

image-based deep neural network on the same sample set89. 449 

4.3. New data preprocessing strategies 450 

New types of algorithms are currently emerging to provide an alternative to the peak-picking 451 

approaches described above.  For instance, Li et al. developed the algorithm Asari which aligns samples 452 

before peak detection using a composite mass track (LC-MS data points with the same consensus m/z 453 

value spanning the full retention time across all analysis). In commonly used software such as XCMS 454 

and MZmine for instance, peaks are aligned after the peak detection, which will cause a small variation 455 

of reported m/z values in each sample and the algorithms will have to ensure that correct peaks are 456 

grouped. By aligning before peak detection, a decrease in computational time and improvement in 457 

reproducibility was demonstrated, as there was no need to align elution peaks between samples and 458 

mass resolution was the only parameter requiring tuning42.  459 

The software HERMES foregoes classical peak detection by considering a vast array of possible 460 

molecular formulas and adducts, detecting information-rich signals independently of chromatographic 461 

peak shape93. IDSL.IPA uses the isotopologues 12C/13C in a similar way to the optimization tool IPO to 462 

define and isolate peaks of organic compounds94.  463 
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Other approaches get rid of the centroiding step and directly work on raw data acquired in profile 464 

mode. Examples include machine learning algorithms using pattern recognition such as artificial neural 465 

networks (ANN) and deep neural networks to recognize features95,96 or CNN to define peak integration 466 

and product separation region (peakOnly, PeakBot)97,98. These approaches, however, depend on the 467 

quality of the training set. The SAFD algorithm also works directly on profile raw data. A three-468 

dimensional Gaussian distribution is fitted onto the profile data. This allows to consider all the 469 

measured points within one feature at the expense of computational time and difficulties in integrating 470 

irregular peak shapes99. Another approach uses a Bayesian probabilistic peak detection algorithm that 471 

weighs the data according to the probability of being affected by a chromatographic peak or noise100. 472 

Additionally, retention time alignment is also investigated to allow to correct for non-monotonic shifts. 473 

Examples include DeepRTAlign101, that combines a pseudo warping function and a deep learning-based 474 

model and Alignstein102, that uses a feature matching method.  475 

5. Suggestion of harmonized QA/QC procedures for data preprocessing 476 

5.1. Overview of current QA/QC approaches 477 

QA/QC would complement all the previously described actions and certify that the data preprocessing 478 

of SSA/NTA meets some defined quality criteria. This will ensure the best possible detection of all true 479 

features and minimize false positives.  480 

QA/QC has successfully been implemented for all analytical and instrumental drifts aspects for SSA and 481 

NTA103. Multiple papers discussed implementing and adopting common QA/QC practices. Still, to the 482 

best of our knowledge, no set of provisions has actually been proposed and defined to assess 483 

specifically the performance of data preprocessing16,58,104. Knolhoff et al. have experimented with QC 484 

practices to test the whole workflow, from sample analysis to data processing, using QC pooled 485 

samples spiked at low, medium and high level105. Satisfactory results were obtained with identification 486 

rates of 70% and a precision ranging from 30 to 50% for all spiked compounds in all QCs.  487 

5.2. Harmonized QA/QC procedures 488 
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Here, building on the Knolhoff et al. initiative, we propose a set of QA/QC criteria that could be used 489 

to evaluate the quality of data processing of SSA/NTA analysis and more particularly: (i) sensitivity of 490 

feature detection, (ii) reproducibility, (iii) integration accuracy, (iv) mass and retention time accuracy 491 

(after realignment and calibration), and (v) consistency. All the parameters, criteria and provisions are 492 

described in Table 2. 493 

At this stage, it is important to mention that the quality of the analytical design (inclusion of blank and 494 

quality control samples along the sequence, randomization of the samples in batches), and process 495 

(performance, stability, repeatability) needs to be thoroughly checked as it will impact the data quality 496 

in general and thus affect the data preprocessing. This is the only way to distinguish issues related to 497 

either analytical or data preprocessing errors.  498 

QA/QC for data preprocessing should be evaluated on representative samples,  e.g., pooled QC 499 

samples spiked with a set of known compounds relevant to the study at two concentration levels (high 500 

and low) injected multiple times, one after the other and across multiple batches. These types of QCs 501 

and blanks are usually included in large-scale non-targeted studies of human specimens103, 502 

environmental6 and food samples to monitor analytical performance and consistency of the 503 

instrument and thus will not require additional analysis. At this stage, standardized reference materials 504 

could also be used to support data preprocessing intercomparison between various studies from 505 

different laboratories.  506 

Ideally, the data preprocessing should not include any gap filling or imputation (it will improve the 507 

detection frequency), grouping of the degenerate features, i.e., adducts, fragment ions (it will impact 508 

the integration results) or normalization of the data (it will affect the integration results of the 509 

compounds).510 
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Table 2 – Proposed harmonized QA/QC criteria to evaluate performances of data preprocessing for qualitative and quantitative SSA/NTA analysis.  For each 511 
parameter, criteria, provision, base for thresholds/tolerances, actions to be taken if failed criteria and useful tools are described. 512 

Parameters 
Type of 

SSA/NTA 
study 

Criteria Provision Base for thresholds/tolerance Actions if failed criteria Possible Tools 

Sensitivity of 
feature 
detection 

Qualitative 
Quantitative 

False negative 
detection rate  
(Spiked compounds) 

Compare the number of detected 
spiked compounds between manual 
accurate processing and 
automatized preprocessing using a 
suspect screening strategy 

Proportion of compounds detected 
in low level spiked QCs, 
Proportion of compounds detected 
in high level spiked QCs 

Optimize peak-picking 
parameters 

Skyline106, mzRAPP11, 
Scannotation107 

Reproducibility 

Qualitative 
Quantitative 

False negative 
detection rate  
(Spiked compounds) 

Compare the false negative rate 
detection across repeated samples 

Proportion of compounds detected 
in low level spiked QCs across 
samples. 
Proportion of compounds detected 
in high level spiked QCs across 
samples. 

Optimize peak-picking 
parameters 

Skyline106, mzRAPP11, 
Scannotation107 

Quantitative 

Reproducibility of 
integration across all 
repeated samples 
analysis 
(All features) 

Calculate the coefficient of variation 
on integrated areas for all 
compounds after data preprocessing 

Coefficient of variation values 
(%CV) 

Optimize peak-picking 
parameters 

MetaboanalystR61 

Integration 
accuracy 

Quantitative 
Proximity to curated 
integration 
(Spiked compounds) 

Compare curated integration of 
isotope ratios to automatized 
preprocessing integration 

Correlation between curated and 
automatized preprocessing 
integration 

Optimize peak-picking 
parameters 

mzRAPP11 

Quantitative 
Relative quantification 
accuracy 
(Spiked compounds) 

Calculate all the area ratios high vs. 
low level spiked compounds 
(Area at level 2 – Area in the 
procedural blank)/(Area at level 1 – 
Area in the procedural blank) 
and apply univariate statistics and 
plot a volcano plot 

Spiked compounds should be 
highlighted as differential (p-
value<0.01 and log2FC>2) 

Check the full data 
preprocessing workflow 

MetaboanalystR61 

Precision/ 
accuracy 

Qualitative 
Quantitative 

Recalibration and time 
alignment quality 
(Spiked compounds) 

Calculate the standard deviation in 
mass and retention time 

Deviation in m/z<5 ppm or less 
depending on instrument and 
concentration of the spiked 
analytes.  
Relative deviation on retention 
time within reasonable limits  

Check recalibration, grouping 
and realignment parameters 

Scannotation107 
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Consistency 
Qualitative 
Quantitative 

Identification with the 
annotation workflow 
using  

1) a suspect list 
containing 
only the 
standard 
compounds 

2) the complete 
suspect list 

(Spiked compounds) 

Run the suspect screening workflow 
with (1) a suspect list containing 
only the standard compounds and 
(2) the suspect list that will be used 
to answer the scientific questions 
and compare the rate of annotated 
spiked compounds vs. detected 
spiked compounds after data 
preprocessing 

Proportion of compounds 
annotated in low level spiked QCs 
Proportion of compounds 
annotated in high level spiked QCs 

Check the full data 
preprocessing workflow 

Scannotation107, patRoon63, 
MS-Dial20 

513 
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5.2.1. Sensitivity of feature detection  514 

The sensitivity of feature detection parameter aims to evaluate the rate of false negative and false 515 

positive detected compounds. These parameters can be evaluated by monitoring the percentage of 516 

recovered spiked compounds compared to manually curated data. Beforehand, it is necessary to check 517 

for the absence or at least a much lower detection (e.g., ratio 1:10) of the spiked compounds in 518 

procedural blanks to avoid affecting detection frequency. A suspect screening strategy can then be 519 

used to compare the number of detected spiked compounds between manual accurate and 520 

automatized preprocessing.  521 

5.2.2. Reproducibility 522 

The reproducibility parameter evaluates the variability linked to data preprocessing of repeated 523 

analysis of the same sample (i.e.; repeated injections of the same QC preparation) within a defined 524 

time period (one or multiple batches). It aims to compare i) the false negative rate of detection of 525 

spiked compounds across repeated samples and ii) the integration of all features across all repeated 526 

analysis of the same sample. To evaluate this last point, following the metabolomics guidelines15, we 527 

suggest to keep only the compounds with a detection rate higher than 70% in all quality control 528 

samples. 529 

5.2.3. Integration accuracy 530 

The integration accuracy aims to evaluate (i) the proximity to manual integration results on the set of 531 

spiked compounds and (ii) the reproducibility and accuracy of integration on all features across all QC 532 

runs. Integration accuracy can be evaluated, as suggested by El Abiead et al.11, on spiked compounds 533 

with the isotopic ratio for low abundant isotopologue (LAIT) and most abundant isotopologue (MAIT) 534 

using the third isotopologue for halogenated compounds and the second for all the other compounds. 535 

Manually curated integration can then be compared to automatized data preprocessing integration. 536 

In parallel, the relative quantification accuracy will be evaluated by comparing the spiked compounds 537 

areas at least at two concentration levels. The ratios ((Area at level 2 – Area in the procedural blank)/ 538 

(Area at level 1 – Area in the procedural blank)) are unlikely to be accurate, but they should be 539 
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highlighted as differential by univariate statistical analysis. Representation as volcano plots (results of 540 

the statistical test, e.g., p-value vs. logarithm in base 2 of fold change) could be used for easy 541 

visualization. 542 

5.2.4. Precision / accuracy  543 

Precision and accuracy of mass and retention time on spiked compounds must be checked to ensure 544 

proper data recalibration and time alignment. Mass and retention time deviations will heavily depend 545 

on the analytical configuration used for instance, the type of HRMS (QTOF vs. Orbitrap), the abundance 546 

of compounds, column stationary phase or flow rate (nano, micro, standard).  For regulatory purposes, 547 

we advocate strict guidelines concerning mass deviation and define a strict limit of less than 5 ppm. 548 

Modern mass spectrometers generally significantly undercut this limit.  To determine the retention 549 

time deviation limits, reference data should be collected on standard compounds over a minimum 550 

span of 10 days or column run time of 200 samples103.  Retention time drifts should also be 551 

continuously monitored, using a set of internal standards spanning the whole elution window and/or 552 

routine measurement of a set of unlabeled compounds and/or reference matrices also spanning the 553 

whole elution window. 554 

5.2.5. Consistency 555 

The consistency parameter will evaluate (i) the ability to identify the compounds with the subsequent 556 

annotation workflow using a suspect list containing only the standards and ii) the ability to identify the 557 

compounds with the subsequent annotation workflow using the most relevant suspect list to answer 558 

the scientific question. Thus, the proportion of correct identifications among spiked compounds after 559 

running the annotation workflow will be compared to the detected spiked compounds after data 560 

preprocessing.  561 

5.3. Tools for QA/QC automatic evaluation 562 

Algorithms have been developed to investigate data quality and could be used to support and help 563 

monitoring the various parameters defined earlier. In addition to vendor software, Skyline106, for 564 

instance, is an open-source software allowing targeted extraction of compounds that could be used 565 
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for rapid manual integration of spiked compounds. mzRAPP11 has been designed to support routine 566 

assessment of the detection and integration of non-target features. It calculates metrics such as 567 

benchmark recovery and isotopic ratio accuracy based on the most abundant isotopologue (MAIT) and 568 

the lowest abundant isotopologue (LAIT). It might be sometimes difficult to see a consistent isotopic 569 

pattern for low level contaminants. Scannotation107 compares experimental isotopic ratios to 570 

theoretical ones. In addition, Scannotation provides a confidence index based on multiple parameters 571 

(retention times, mass accuracy and isotopic ratios) and a detection frequency of each feature in the 572 

dataset and could be used to evaluate consistency. MetaboanalystR61 offers multiple statistical tools 573 

and can be used for instance to calculate coefficients of variation on peak integration. MetaboanalystR 574 

also provides univariate analysis that could be used to evaluate the semi-quantification accuracy. 575 

Finally, multiple annotation software could be used to ensure that correctly preprocessed spiked 576 

compounds are also identified. Examples of tools include patRoon63 and MS-Dial20.  577 

6. Conclusion 578 

Non-targeted LC-HRMS environmental, food and human biomonitoring data preprocessing suffers 579 

from type I errors (false positive detection), type II errors (false negative detection) and poor 580 

reproducibility, depending on the preprocessing software, preprocessing parameters and user 581 

experience. Currently, there is no ideal tool capable of preprocessing the data in a non-linear way and 582 

allowing the peak-picking of a diverse array of chromatographic peaks. Solutions have been proposed 583 

to mitigate these issues: (i) repositories, (ii) guidelines for reporting data preprocessing, (ii) 584 

implementation of semi-automated preprocessing workflows, (iii) provision of benchmark datasets, 585 

and (iv) development of tools to minimize true and false negative peak-picking (optimization of data 586 

preprocessing parameters and filtering of false positive features). To add to these ongoing initiatives, 587 

we propose a set of harmonized QA/QC procedures to ensure optimal detection of all true features 588 

and minimize false positives. This QA/QC set checks for sensitivity of feature detection, reproducibility, 589 

integration accuracy, precision/accuracy and consistency. We recommend these criteria to be carefully 590 
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checked before further investigating the results. We did not provide any thresholds in this review, as 591 

the decision of what is acceptable depends on the study design and objectives, the instrument and the 592 

preprocessing tool, as well as the compromise the user is ready to accept between preprocessing time 593 

and detection of compounds of interest. Further collaborative studies will be needed to determine 594 

thresholds and tolerances for these QA/QCs.  595 

In any case, the results of QA/QC should be reported in the SSA/NTA data preprocessing workflow, as 596 

a table for instance, to ensure transparency and ease of data reusability of any published study. 597 

Interpretable criteria will also help to communicate confidence of data in the regulatory context. We 598 

envision that these QA/QC set will evolve with time to incorporate the last technology advancements, 599 

for instance ion mobility measurements and derived collision cross section (CCS) that are started to be 600 

evaluated for application in the regulatory context, and for which reporting guides are already 601 

available108,109. We hope that these QA/QC approaches will help to develop a new generation of tools 602 

and benchmark datasets aiming to assess efficiently the quality of SSA and NTA data preprocessing. 603 

Providing high quality preprocessed datasets with robust feature annotation is a mandatory step to 604 

provide proper training datasets for the next-generation machine learning tools that will help to 605 

automate the processing of complex HRMS datasets in the near future. 606 

 607 

Acknowledgment 608 

This work was supported by the project Partnership for the Assessment of Risks from Chemicals (PARC) 609 

funded by the European Union research and innovation program Horizon Europe [grant numbers 610 

101057014].  SL, JC and AD acknowledge the research infrastructure France Exposome. EJP, JK and ŽT 611 

acknowledge the research infrastructure RECETOX RI (LM2023069), H2020 CETOCOEN Excellence 612 

857560 and OP RDE CZ.02.1.01/0.0/0.0/17_043/0009632). 613 

Author contributions:  614 

Conceptualization; SL, JC, AD 615 

Investigation; SL, JC, AD, EJP, JH, CH, ELS, ML, JPA 616 

Jo
urn

al 
Pre-

pro
of



   

 

31 
 

Methodology; SL, JC, AD, EJP, JH, CH, ELS, ML, JPA 617 

Validation; SL, JC, AD 618 

Visualization; SL, JC 619 

Roles/Writing - original draft; SL 620 

Writing - review & editing; SL, JC, AD, EJP, JH, CH, TS, LA, FB, NC, LD, GD, CG, TG, BH, EJ, JK, TK, BLB, 621 

HM, RN, HO, NP, JP, DS, MS, ŽT, ELS, ML, JPA 622 

References  623 

(1) Wang, Z.; Walker, G. W.; Muir, D. C. G.; Nagatani-Yoshida, K. Toward a Global Understanding of 624 

Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. 625 

Environ. Sci. Technol. 2020, 54 (5), 2575–2584. https://doi.org/10.1021/acs.est.9b06379. 626 

(2) Ganzleben, C.; Antignac, J.-P.; Barouki, R.; Castaño, A.; Fiddicke, U.; Klánová, J.; Lebret, E.; Olea, N.; 627 

Sarigiannis, D.; Schoeters, G. R.; Sepai, O.; Tolonen, H.; Kolossa-Gehring, M. Human Biomonitoring 628 

as a Tool to Support Chemicals Regulation in the European Union. International Journal of Hygiene 629 

and Environmental Health 2017, 220 (2, Part A), 94–97. 630 

https://doi.org/10.1016/j.ijheh.2017.01.007. 631 

(3) Brack, W.; Aissa, S. A.; Backhaus, T.; Dulio, V.; Escher, B. I.; Faust, M.; Hilscherova, K.; Hollender, J.; 632 

Hollert, H.; Müller, C.; Munthe, J.; Posthuma, L.; Seiler, T.-B.; Slobodnik, J.; Teodorovic, I.; Tindall, 633 

A. J.; de Aragão Umbuzeiro, G.; Zhang, X.; Altenburger, R. Effect-Based Methods Are Key. The 634 

European Collaborative Project SOLUTIONS Recommends Integrating Effect-Based Methods for 635 

Diagnosis and Monitoring of Water Quality. Environmental Sciences Europe 2019, 31 (1), 10. 636 

https://doi.org/10.1186/s12302-019-0192-2. 637 

(4) Luijten, M.; Vlaanderen, J.; Kortenkamp, A.; Antignac, J.-P.; Barouki, R.; Bil, W.; van den Brand, A.; 638 

den Braver-Sewradj, S.; van Klaveren, J.; Mengelers, M.; Ottenbros, I.; Rantakokko, P.; Kolossa-639 

Gehring, M.; Lebret, E. Mixture Risk Assessment and Human Biomonitoring: Lessons Learnt from 640 

HBM4EU. International Journal of Hygiene and Environmental Health 2023, 249, 114135. 641 

https://doi.org/10.1016/j.ijheh.2023.114135. 642 

Jo
urn

al 
Pre-

pro
of



   

 

32 
 

(5) David, A.; Chaker, J.; Price, E. J.; Bessonneau, V.; Chetwynd, A. J.; Vitale, C. M.; Klánová, J.; Walker, 643 

D. I.; Antignac, J.-P.; Barouki, R.; Miller, G. W. Towards a Comprehensive Characterisation of the 644 

Human Internal Chemical Exposome: Challenges and Perspectives. Environ Int 2021, 156, 106630. 645 

https://doi.org/10.1016/j.envint.2021.106630. 646 

(6) Hollender, J.; Schymanski, E. L.; Ahrens, L.; Alygizakis, N.; Béen, F.; Bijlsma, L.; Brunner, A. M.; 647 

Celma, A.; Fildier, A.; Fu, Q.; Gago-Ferrero, P.; Gil-Solsona, R.; Haglund, P.; Hansen, M.; Kaserzon, 648 

S.; Kruve, A.; Lamoree, M.; Margoum, C.; Meijer, J.; Merel, S.; Rauert, C.; Rostkowski, P.; 649 

Samanipour, S.; Schulze, B.; Schulze, T.; Singh, R. R.; Slobodnik, J.; Steininger-Mairinger, T.; 650 

Thomaidis, N. S.; Togola, A.; Vorkamp, K.; Vulliet, E.; Zhu, L.; Krauss, M. NORMAN Guidance on 651 

Suspect and Non-Target Screening in Environmental Monitoring. Environmental Sciences Europe 652 

2023, 35 (1), 75. https://doi.org/10.1186/s12302-023-00779-4. 653 

(7) Hollender, J.; Schymanski, E. L.; Singer, H. P.; Ferguson, P. L. Nontarget Screening with High 654 

Resolution Mass Spectrometry in the Environment: Ready to Go? Environ. Sci. Technol. 2017, 51 655 

(20), 11505–11512. https://doi.org/10.1021/acs.est.7b02184. 656 

(8) Pourchet, M.; Debrauwer, L.; Klanova, J.; Price, E. J.; Covaci, A.; Caballero-Casero, N.; Oberacher, 657 

H.; Lamoree, M.; Damont, A.; Fenaille, F.; Vlaanderen, J.; Meijer, J.; Krauss, M.; Sarigiannis, D.; 658 

Barouki, R.; Le Bizec, B.; Antignac, J.-P. Suspect and Non-Targeted Screening of Chemicals of 659 

Emerging Concern for Human Biomonitoring, Environmental Health Studies and Support to Risk 660 

Assessment: From Promises to Challenges and Harmonisation Issues. Environment International 661 

2020, 139, 105545. https://doi.org/10.1016/j.envint.2020.105545. 662 

(9) Rampler, E.; Abiead, Y. E.; Schoeny, H.; Rusz, M.; Hildebrand, F.; Fitz, V.; Koellensperger, G. 663 

Recurrent Topics in Mass Spectrometry-Based Metabolomics and Lipidomics-Standardization, 664 

Coverage, and Throughput. Anal Chem 2021, 93 (1), 519–545. 665 

https://doi.org/10.1021/acs.analchem.0c04698. 666 

Jo
urn

al 
Pre-

pro
of



   

 

33 
 

(10) Chaker, J.; Gilles, E.; Léger, T.; Jégou, B.; David, A. From Metabolomics to HRMS-Based 667 

Exposomics: Adapting Peak Picking and Developing Scoring for MS1 Suspect Screening. Anal Chem 668 

2021, 93 (3), 1792–1800. https://doi.org/10.1021/acs.analchem.0c04660. 669 

(11) El Abiead, Y.; Milford, M.; Schoeny, H.; Rusz, M.; Salek, R. M.; Koellensperger, G. Power of 670 

mzRAPP-Based Performance Assessments in MS1-Based Nontargeted Feature Detection. Anal. 671 

Chem. 2022, 94 (24), 8588–8595. https://doi.org/10.1021/acs.analchem.1c05270. 672 

(12) Renner, G.; Reuschenbach, M. Critical Review on Data Processing Algorithms in Non-Target 673 

Screening: Challenges and Opportunities to Improve Result Comparability. Anal Bioanal Chem 674 

2023, 415 (18), 4111–4123. https://doi.org/10.1007/s00216-023-04776-7. 675 

(13) Kirwan, J. A.; Gika, H.; Beger, R. D.; Bearden, D.; Dunn, W. B.; Goodacre, R.; Theodoridis, G.; 676 

Witting, M.; Yu, L.-R.; Wilson, I. D.; the metabolomics Quality Assurance and Quality Control 677 

Consortium (mQACC). Quality Assurance and Quality Control Reporting in Untargeted Metabolic 678 

Phenotyping: mQACC Recommendations for Analytical Quality Management. Metabolomics 2022, 679 

18 (9), 70. https://doi.org/10.1007/s11306-022-01926-3. 680 

(14) Oberacher, H.; Sasse, M.; Antignac, J.-P.; Guitton, Y.; Debrauwer, L.; Jamin, E. L.; Schulze, T.; 681 

Krauss, M.; Covaci, A.; Caballero-Casero, N.; Rousseau, K.; Damont, A.; Fenaille, F.; Lamoree, M.; 682 

Schymanski, E. L. A European Proposal for Quality Control and Quality Assurance of Tandem Mass 683 

Spectral Libraries. Environmental Sciences Europe 2020, 32 (1), 43. 684 

https://doi.org/10.1186/s12302-020-00314-9. 685 

(15) Broadhurst, D.; Goodacre, R.; Reinke, S. N.; Kuligowski, J.; Wilson, I. D.; Lewis, M. R.; Dunn, W. 686 

B. Guidelines and Considerations for the Use of System Suitability and Quality Control Samples in 687 

Mass Spectrometry Assays Applied in Untargeted Clinical Metabolomic Studies. Metabolomics 688 

2018, 14 (6), 72. https://doi.org/10.1007/s11306-018-1367-3. 689 

(16) Dudzik, D.; Barbas-Bernardos, C.; García, A.; Barbas, C. Quality Assurance Procedures for 690 

Mass Spectrometry Untargeted Metabolomics. a Review. Journal of Pharmaceutical and 691 

Biomedical Analysis 2018, 147, 149–173. https://doi.org/10.1016/j.jpba.2017.07.044. 692 

Jo
urn

al 
Pre-

pro
of



   

 

34 
 

(17) Misra, B. B. Data Normalization Strategies in Metabolomics: Current Challenges, Approaches, 693 

and Tools. Eur J Mass Spectrom (Chichester) 2020, 26 (3), 165–174. 694 

https://doi.org/10.1177/1469066720918446. 695 

(18) Cuevas-Delgado, P.; Dudzik, D.; Miguel, V.; Lamas, S.; Barbas, C. Data-Dependent 696 

Normalization Strategies for Untargeted Metabolomics-a Case Study. Anal Bioanal Chem 2020, 697 

412 (24), 6391–6405. https://doi.org/10.1007/s00216-020-02594-9. 698 

(19) Smith, C. A.; Want, E. J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass 699 

Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and 700 

Identification. Anal. Chem. 2006, 78 (3), 779–787. https://doi.org/10.1021/ac051437y. 701 

(20) Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, 702 

J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive 703 

Metabolome Analysis. Nat Methods 2015, 12 (6), 523–526. https://doi.org/10.1038/nmeth.3393. 704 

(21) Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T. S.; Bushuiev, R.; 705 

Murray, K. J.; Hoffmann, N.; Lu, M.; Sarvepalli, A.; Zhang, Z.; Fleischauer, M.; Dührkop, K.; Wesner, 706 

M.; Hoogstra, S. J.; Rudt, E.; Mokshyna, O.; Brungs, C.; Ponomarov, K.; Mutabdžija, L.; Damiani, T.; 707 

Pudney, C. J.; Earll, M.; Helmer, P. O.; Fallon, T. R.; Schulze, T.; Rivas-Ubach, A.; Bilbao, A.; Richter, 708 

H.; Nothias, L.-F.; Wang, M.; Orešič, M.; Weng, J.-K.; Böcker, S.; Jeibmann, A.; Hayen, H.; Karst, U.; 709 

Dorrestein, P. C.; Petras, D.; Du, X.; Pluskal, T. Integrative Analysis of Multimodal Mass 710 

Spectrometry Data in MZmine 3. Nat Biotechnol 2023, 41 (4), 447–449. 711 

https://doi.org/10.1038/s41587-023-01690-2. 712 

(22) Röst, H. L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; 713 

Ehrlich, H.-C.; Gutenbrunner, P.; Kenar, E.; Liang, X.; Nahnsen, S.; Nilse, L.; Pfeuffer, J.; 714 

Rosenberger, G.; Rurik, M.; Schmitt, U.; Veit, J.; Walzer, M.; Wojnar, D.; Wolski, W. E.; Schilling, O.; 715 

Choudhary, J. S.; Malmström, L.; Aebersold, R.; Reinert, K.; Kohlbacher, O. OpenMS: A Flexible 716 

Open-Source Software Platform for Mass Spectrometry Data Analysis. Nat Methods 2016, 13 (9), 717 

741–748. https://doi.org/10.1038/nmeth.3959. 718 

Jo
urn

al 
Pre-

pro
of



   

 

35 
 

(23) Misra, B. B. New Software Tools, Databases, and Resources in Metabolomics: Updates from 719 

2020. Metabolomics 2021, 17 (5), 49. https://doi.org/10.1007/s11306-021-01796-1. 720 

(24) Spicer, R.; Salek, R. M.; Moreno, P.; Cañueto, D.; Steinbeck, C. Navigating Freely-Available 721 

Software Tools for Metabolomics Analysis. Metabolomics 2017, 13 (9), 106. 722 

https://doi.org/10.1007/s11306-017-1242-7. 723 

(25) Stanstrup, J.; Broeckling, C. D.; Helmus, R.; Hoffmann, N.; Mathé, E.; Naake, T.; Nicolotti, L.; 724 

Peters, K.; Rainer, J.; Salek, R. M.; Schulze, T.; Schymanski, E. L.; Stravs, M. A.; Thévenot, E. A.; 725 

Treutler, H.; Weber, R. J. M.; Willighagen, E.; Witting, M.; Neumann, S. The metaRbolomics 726 

Toolbox in Bioconductor and Beyond. Metabolites 2019, 9 (10), 200. 727 

https://doi.org/10.3390/metabo9100200. 728 

(26) Yu, T.; Park, Y.; Johnson, J. M.; Jones, D. P. apLCMS--Adaptive Processing of High-Resolution 729 

LC/MS Data. Bioinformatics 2009, 25 (15), 1930–1936. 730 

https://doi.org/10.1093/bioinformatics/btp291. 731 

(27) Hohrenk, L. L.; Itzel, F.; Baetz, N.; Tuerk, J.; Vosough, M.; Schmidt, T. C. Comparison of 732 

Software Tools for Liquid Chromatography–High-Resolution Mass Spectrometry Data Processing in 733 

Nontarget Screening of Environmental Samples. Anal. Chem. 2020, 92 (2), 1898–1907. 734 

https://doi.org/10.1021/acs.analchem.9b04095. 735 

(28) Müller, E.; Huber, C. E.; Brack, W.; Krauss, M.; Schulze, T. Symbolic Aggregate Approximation 736 

Improves Gap Filling in High-Resolution Mass Spectrometry Data Processing. Anal. Chem. 2020, 92 737 

(15), 10425–10432. https://doi.org/10.1021/acs.analchem.0c00899. 738 

(29) Armitage, E. G.; Godzien, J.; Alonso-Herranz, V.; López-Gonzálvez, Á.; Barbas, C. Missing Value 739 

Imputation Strategies for Metabolomics Data. Electrophoresis 2015, 36 (24), 3050–3060. 740 

https://doi.org/10.1002/elps.201500352. 741 

(30) Clark, T. N.; Houriet, J.; Vidar, W. S.; Kellogg, J. J.; Todd, D. A.; Cech, N. B.; Linington, R. G. 742 

Interlaboratory Comparison of Untargeted Mass Spectrometry Data Uncovers Underlying Causes 743 

for Variability. J. Nat. Prod. 2021, 84 (3), 824–835. https://doi.org/10.1021/acs.jnatprod.0c01376. 744 

Jo
urn

al 
Pre-

pro
of



   

 

36 
 

(31) Baker, E. S.; Patti, G. J. Perspectives on Data Analysis in Metabolomics: Points of Agreement 745 

and Disagreement from the 2018 ASMS Fall Workshop. J Am Soc Mass Spectrom 2019, 30 (10), 746 

2031–2036. https://doi.org/10.1007/s13361-019-02295-3. 747 

(32) Smith, R.; Tostengard, A. R. Quantitative Evaluation of Ion Chromatogram Extraction 748 

Algorithms. J. Proteome Res. 2020, 19 (5), 1953–1964. 749 

https://doi.org/10.1021/acs.jproteome.9b00768. 750 

(33) Reuschenbach, M.; Hohrenk-Danzouma, L. L.; Schmidt, T. C.; Renner, G. Development of a 751 

Scoring Parameter to Characterize Data Quality of Centroids in High-Resolution Mass Spectra. 752 

Anal Bioanal Chem 2022, 414 (22), 6635–6645. https://doi.org/10.1007/s00216-022-04224-y. 753 

(34) Rafiei, A.; Sleno, L. Comparison of Peak-Picking Workflows for Untargeted Liquid 754 

Chromatography/High-Resolution Mass Spectrometry Metabolomics Data Analysis. Rapid 755 

Communications in Mass Spectrometry 2015, 29 (1), 119–127. https://doi.org/10.1002/rcm.7094. 756 

(35) Liao, J.; Zhang, Y.; Zhang, W.; Zeng, Y.; Zhao, J.; Zhang, J.; Yao, T.; Li, H.; Shen, X.; Wu, G.; 757 

Zhang, W. Different Software Processing Affects the Peak Picking and Metabolic Pathway 758 

Recognition of Metabolomics Data. Journal of Chromatography A 2023, 1687, 463700. 759 

https://doi.org/10.1016/j.chroma.2022.463700. 760 

(36) Li, Z.; Lu, Y.; Guo, Y.; Cao, H.; Wang, Q.; Shui, W. Comprehensive Evaluation of Untargeted 761 

Metabolomics Data Processing Software in Feature Detection, Quantification and Discriminating 762 

Marker Selection. Analytica Chimica Acta 2018, 1029, 50–57. 763 

https://doi.org/10.1016/j.aca.2018.05.001. 764 

(37) Chen, Y.; Xu, J.; Zhang, R.; Shen, G.; Song, Y.; Sun, J.; He, J.; Zhan, Q.; Abliz, Z. Assessment of 765 

Data Pre-Processing Methods for LC-MS/MS-Based Metabolomics of Uterine Cervix Cancer. 766 

Analyst 2013, 138 (9), 2669–2677. https://doi.org/10.1039/C3AN36818A. 767 

(38) Guo, J.; Huan, T. Mechanistic Understanding of the Discrepancies between Common Peak 768 

Picking Algorithms in Liquid Chromatography–Mass Spectrometry-Based Metabolomics. Anal. 769 

Chem. 2023, 95 (14), 5894–5902. https://doi.org/10.1021/acs.analchem.2c04887. 770 

Jo
urn

al 
Pre-

pro
of



   

 

37 
 

(39) Coble, J. B.; Fraga, C. G. Comparative Evaluation of Preprocessing Freeware on 771 

Chromatography/Mass Spectrometry Data for Signature Discovery. Journal of Chromatography A 772 

2014, 1358, 155–164. https://doi.org/10.1016/j.chroma.2014.06.100. 773 

(40) Baran, R. Untargeted Metabolomics Suffers from Incomplete Raw Data Processing. 774 

Metabolomics 2017, 13 (9), 107. https://doi.org/10.1007/s11306-017-1246-3. 775 

(41) Smith, R.; Ventura, D.; Prince, J. T. Controlling for Confounding Variables in MS-Omics 776 

Protocol: Why Modularity Matters. Briefings in Bioinformatics 2014, 15 (5), 768–770. 777 

https://doi.org/10.1093/bib/bbt049. 778 

(42) Li, S.; Siddiqa, A.; Thapa, M.; Chi, Y.; Zheng, S. Trackable and Scalable LC-MS Metabolomics 779 

Data Processing Using Asari. Nat Commun 2023, 14 (1), 4113. https://doi.org/10.1038/s41467-780 

023-39889-1. 781 

(43) Houriet, J.; Vidar, W. S.; Manwill, P. K.; Todd, D. A.; Cech, N. B. How Low Can You Go? 782 

Selecting Intensity Thresholds for Untargeted Metabolomics Data Preprocessing. Anal. Chem. 783 

2022, 94 (51), 17964–17971. https://doi.org/10.1021/acs.analchem.2c04088. 784 

(44) Hajjar, G.; Barros Santos, M. C.; Bertrand-Michel, J.; Canlet, C.; Castelli, F.; Creusot, N.; 785 

Dechaumet, S.; Diémé, B.; Giacomoni, F.; Giraudeau, P.; Guitton, Y.; Thévenot, E.; Tremblay-786 

Franco, M.; Junot, C.; Jourdan, F.; Fenaille, F.; Comte, B.; Pétriacq, P.; Pujos-Guillot, E. Scaling-up 787 

Metabolomics: Current State and Perspectives. TrAC Trends in Analytical Chemistry 2023, 167, 788 

117225. https://doi.org/10.1016/j.trac.2023.117225. 789 

(45) Müller, E.; Huber, C.; Beckers, L.-M.; Brack, W.; Krauss, M.; Schulze, T. A Data Set of 255,000 790 

Randomly Selected and Manually Classified Extracted Ion Chromatograms for Evaluation of Peak 791 

Detection Methods. Metabolites 2020, 10 (4), 162. https://doi.org/10.3390/metabo10040162. 792 

(46) Goodacre, R.; Broadhurst, D.; Smilde, A. K.; Kristal, B. S.; Baker, J. D.; Beger, R.; Bessant, C.; 793 

Connor, S.; Capuani, G.; Craig, A.; Ebbels, T.; Kell, D. B.; Manetti, C.; Newton, J.; Paternostro, G.; 794 

Somorjai, R.; Sjöström, M.; Trygg, J.; Wulfert, F. Proposed Minimum Reporting Standards for Data 795 

Jo
urn

al 
Pre-

pro
of



   

 

38 
 

Analysis in Metabolomics. Metabolomics 2007, 3 (3), 231–241. https://doi.org/10.1007/s11306-796 

007-0081-3. 797 

(47) Considine, E. C.; Thomas, G.; Boulesteix, A. L.; Khashan, A. S.; Kenny, L. C. Critical Review of 798 

Reporting of the Data Analysis Step in Metabolomics. Metabolomics 2017, 14 (1), 7. 799 

https://doi.org/10.1007/s11306-017-1299-3. 800 

(48) Viant, M. R.; Ebbels, T. M. D.; Beger, R. D.; Ekman, D. R.; Epps, D. J. T.; Kamp, H.; Leonards, P. 801 

E. G.; Loizou, G. D.; MacRae, J. I.; van Ravenzwaay, B.; Rocca-Serra, P.; Salek, R. M.; Walk, T.; 802 

Weber, R. J. M. Use Cases, Best Practice and Reporting Standards for Metabolomics in Regulatory 803 

Toxicology. Nat Commun 2019, 10, 3041. https://doi.org/10.1038/s41467-019-10900-y. 804 

(49) Peter, K. T.; Phillips, A. L.; Knolhoff, A. M.; Gardinali, P. R.; Manzano, C. A.; Miller, K. E.; 805 

Pristner, M.; Sabourin, L.; Sumarah, M. W.; Warth, B.; Sobus, J. R. Nontargeted Analysis Study 806 

Reporting Tool: A Framework to Improve Research Transparency and Reproducibility. Anal Chem 807 

2021, 93 (41), 13870–13879. https://doi.org/10.1021/acs.analchem.1c02621. 808 

(50) Sud, M.; Fahy, E.; Cotter, D.; Azam, K.; Vadivelu, I.; Burant, C.; Edison, A.; Fiehn, O.; Higashi, 809 

R.; Nair, K. S.; Sumner, S.; Subramaniam, S. Metabolomics Workbench: An International 810 

Repository for Metabolomics Data and Metadata, Metabolite Standards, Protocols, Tutorials and 811 

Training, and Analysis Tools. Nucleic Acids Res 2016, 44 (Database issue), D463–D470. 812 

https://doi.org/10.1093/nar/gkv1042. 813 

(51) Haug, K.; Cochrane, K.; Nainala, V. C.; Williams, M.; Chang, J.; Jayaseelan, K. V.; O’Donovan, C. 814 

MetaboLights: A Resource Evolving in Response to the Needs of Its Scientific Community. Nucleic 815 

Acids Research 2020, 48 (D1), D440–D444. https://doi.org/10.1093/nar/gkz1019. 816 

(52) Leao, T. F.; Clark, C. M.; Bauermeister, A.; Elijah, E. O.; Gentry, E.; Husband, M.; Faria de 817 

Oliveira, M.; Bandeira, N.; Wang, M.; Dorrestein, P. C. Quick-Start for Untargeted Metabolomics 818 

Analysis in GNPS. Nat Metab 2021, 3 (7), 880–882. https://doi.org/10.1038/s42255-021-00429-0. 819 

(53) Deutsch, E. W.; Bandeira, N.; Perez-Riverol, Y.; Sharma, V.; Carver, J. J.; Mendoza, L.; Kundu, 820 

D. J.; Wang, S.; Bandla, C.; Kamatchinathan, S.; Hewapathirana, S.; Pullman, B. S.; Wertz, J.; Sun, Z.; 821 

Jo
urn

al 
Pre-

pro
of



   

 

39 
 

Kawano, S.; Okuda, S.; Watanabe, Y.; MacLean, B.; MacCoss, M. J.; Zhu, Y.; Ishihama, Y.; Vizcaíno, 822 

J. A. The ProteomeXchange Consortium at 10 Years: 2023 Update. Nucleic Acids Res 2023, 51 (D1), 823 

D1539–D1548. https://doi.org/10.1093/nar/gkac1040. 824 

(54) ProteomeCentral Datasets. https://proteomecentral.proteomexchange.org/ (accessed 2023-825 

11-26). 826 

(55) MetabolomeXchange. http://www.metabolomexchange.org/site/ (accessed 2023-11-26). 827 

(56) Alygizakis, N. A.; Oswald, P.; Thomaidis, N. S.; Schymanski, E. L.; Aalizadeh, R.; Schulze, T.; 828 

Oswaldova, M.; Slobodnik, J. NORMAN Digital Sample Freezing Platform: A European Virtual 829 

Platform to Exchange Liquid Chromatography High Resolution-Mass Spectrometry Data and 830 

Screen Suspects in “Digitally Frozen” Environmental Samples. TrAC Trends in Analytical Chemistry 831 

2019, 115, 129–137. https://doi.org/10.1016/j.trac.2019.04.008. 832 

(57) Home - Digital Sample Freezing Platform. https://dsfp.norman-data.eu/ (accessed 2023-11-833 

26). 834 

(58) Schulze, B.; Jeon, Y.; Kaserzon, S.; Heffernan, A. L.; Dewapriya, P.; O’Brien, J.; Gomez Ramos, 835 

M. J.; Ghorbani Gorji, S.; Mueller, J. F.; Thomas, K. V.; Samanipour, S. An Assessment of Quality 836 

Assurance/Quality Control Efforts in High Resolution Mass Spectrometry Non-Target Workflows 837 

for Analysis of Environmental Samples. TrAC Trends in Analytical Chemistry 2020, 133, 116063. 838 

https://doi.org/10.1016/j.trac.2020.116063. 839 

(59) Hites, R. A.; Jobst, K. J. Is Nontargeted Screening Reproducible? Environ. Sci. Technol. 2018, 840 

52 (21), 11975–11976. https://doi.org/10.1021/acs.est.8b05671. 841 

(60) Giacomoni, F.; Le Corguillé, G.; Monsoor, M.; Landi, M.; Pericard, P.; Pétéra, M.; Duperier, C.; 842 

Tremblay-Franco, M.; Martin, J.-F.; Jacob, D.; Goulitquer, S.; Thévenot, E. A.; Caron, C. 843 

Workflow4Metabolomics: A Collaborative Research Infrastructure for Computational 844 

Metabolomics. Bioinformatics 2015, 31 (9), 1493–1495. 845 

https://doi.org/10.1093/bioinformatics/btu813. 846 

Jo
urn

al 
Pre-

pro
of



   

 

40 
 

(61) Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 847 

for LC-HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global 848 

Metabolomics Data. Nat Protoc 2022, 17 (8), 1735–1761. https://doi.org/10.1038/s41596-022-849 

00710-w. 850 

(62) An Open Software Development-Based Ecosystem of R Packages for Metabolomics Data 851 

Analysis. https://doi.org/10.5281/zenodo.7936787. 852 

(63) Helmus, R.; ter Laak, T. L.; van Wezel, A. P.; de Voogt, P.; Schymanski, E. L. patRoon: Open 853 

Source Software Platform for Environmental Mass Spectrometry Based Non-Target Screening. 854 

Journal of Cheminformatics 2021, 13 (1), 1. https://doi.org/10.1186/s13321-020-00477-w. 855 

(64) Navarro, P.; Kuharev, J.; Gillet, L. C.; Bernhardt, O. M.; MacLean, B.; Röst, H. L.; Tate, S. A.; 856 

Tsou, C.-C.; Reiter, L.; Distler, U.; Rosenberger, G.; Perez-Riverol, Y.; Nesvizhskii, A. I.; Aebersold, 857 

R.; Tenzer, S. A Multicenter Study Benchmarks Software Tools for Label-Free Proteome 858 

Quantification. Nat Biotechnol 2016, 34 (11), 1130–1136. https://doi.org/10.1038/nbt.3685. 859 

(65) Ramus, C.; Hovasse, A.; Marcellin, M.; Hesse, A.-M.; Mouton-Barbosa, E.; Bouyssié, D.; Vaca, 860 

S.; Carapito, C.; Chaoui, K.; Bruley, C.; Garin, J.; Cianférani, S.; Ferro, M.; Van Dorssaeler, A.; Burlet-861 

Schiltz, O.; Schaeffer, C.; Couté, Y.; Gonzalez de Peredo, A. Benchmarking Quantitative Label-Free 862 

LC–MS Data Processing Workflows Using a Complex Spiked Proteomic Standard Dataset. Journal 863 

of Proteomics 2016, 132, 51–62. https://doi.org/10.1016/j.jprot.2015.11.011. 864 

(66) Myers, O. D.; Sumner, S. J.; Li, S.; Barnes, S.; Du, X. Detailed Investigation and Comparison of 865 

the XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection 866 

Methods for Preprocessing Mass Spectrometry Metabolomics Data. Anal. Chem. 2017, 89 (17), 867 

8689–8695. https://doi.org/10.1021/acs.analchem.7b01069. 868 

(67) Henning, J.; Tostengard, A.; Smith, R. A Peptide-Level Fully Annotated Data Set for 869 

Quantitative Evaluation of Precursor-Aware Mass Spectrometry Data Processing Algorithms. J. 870 

Proteome Res. 2019, 18 (1), 392–398. https://doi.org/10.1021/acs.jproteome.8b00659. 871 

Jo
urn

al 
Pre-

pro
of



   

 

41 
 

(68) Schulze, B.; van Herwerden, D.; Allan, I.; Bijlsma, L.; Etxebarria, N.; Hansen, M.; Merel, S.; 872 

Vrana, B.; Aalizadeh, R.; Bajema, B.; Dubocq, F.; Coppola, G.; Fildier, A.; Fialová, P.; Frøkjær, E.; 873 

Grabic, R.; Gago-Ferrero, P.; Gravert, T.; Hollender, J.; Huynh, N.; Jacobs, G.; Jonkers, T.; Kaserzon, 874 

S.; Lamoree, M.; Le Roux, J.; Mairinger, T.; Margoum, C.; Mascolo, G.; Mebold, E.; Menger, F.; 875 

Miège, C.; Meijer, J.; Moilleron, R.; Murgolo, S.; Peruzzo, M.; Pijnappels, M.; Reid, M.; Roscioli, C.; 876 

Soulier, C.; Valsecchi, S.; Thomaidis, N.; Vulliet, E.; Young, R.; Samanipour, S. Inter-Laboratory 877 

Mass Spectrometry Dataset Based on Passive Sampling of Drinking Water for Non-Target Analysis. 878 

Sci Data 2021, 8 (1), 223. https://doi.org/10.1038/s41597-021-01002-w. 879 

(69) Eliasson, M.; Rännar, S.; Madsen, R.; Donten, M. A.; Marsden-Edwards, E.; Moritz, T.; 880 

Shockcor, J. P.; Johansson, E.; Trygg, J. Strategy for Optimizing LC-MS Data Processing in 881 

Metabolomics: A Design of Experiments Approach. Anal. Chem. 2012, 84 (15), 6869–6876. 882 

https://doi.org/10.1021/ac301482k. 883 

(70) Zheng, H.; Clausen, M. R.; Dalsgaard, T. K.; Mortensen, G.; Bertram, H. C. Time-Saving Design 884 

of Experiment Protocol for Optimization of LC-MS Data Processing in Metabolomic Approaches. 885 

Anal. Chem. 2013, 85 (15), 7109–7116. https://doi.org/10.1021/ac4020325. 886 

(71) Kiefer, K.; Du, L.; Singer, H.; Hollender, J. Identification of LC-HRMS Nontarget Signals in 887 

Groundwater after Source Related Prioritization. Water Research 2021, 196, 116994. 888 

https://doi.org/10.1016/j.watres.2021.116994. 889 

(72) Dom, I.; Biré, R.; Hort, V.; Lavison-Bompard, G.; Nicolas, M.; Guérin, T. Extended Targeted and 890 

Non-Targeted Strategies for the Analysis of Marine Toxins in Mussels and Oysters by (LC-HRMS). 891 

Toxins 2018, 10 (9), 375. https://doi.org/10.3390/toxins10090375. 892 

(73) Hu, M.; Krauss, M.; Brack, W.; Schulze, T. Optimization of LC-Orbitrap-HRMS Acquisition and 893 

MZmine 2 Data Processing for Nontarget Screening of Environmental Samples Using Design of 894 

Experiments. Anal Bioanal Chem 2016, 408 (28), 7905–7915. https://doi.org/10.1007/s00216-016-895 

9919-8. 896 

Jo
urn

al 
Pre-

pro
of



   

 

42 
 

(74) Manier, S. K.; Keller, A.; Meyer, M. R. Automated Optimization of XCMS Parameters for 897 

Improved Peak Picking of Liquid Chromatography–Mass Spectrometry Data Using the Coefficient 898 

of Variation and Parameter Sweeping for Untargeted Metabolomics. Drug Testing and Analysis 899 

2019, 11 (6), 752–761. https://doi.org/10.1002/dta.2552. 900 

(75) Uppal, K.; Soltow, Q. A.; Strobel, F. H.; Pittard, W. S.; Gernert, K. M.; Yu, T.; Jones, D. P. 901 

xMSanalyzer: Automated Pipeline for Improved Feature Detection and Downstream Analysis of 902 

Large-Scale, Non-Targeted Metabolomics Data. BMC Bioinformatics 2013, 14 (1), 15. 903 

https://doi.org/10.1186/1471-2105-14-15. 904 

(76) Ju, R.; Liu, X.; Zheng, F.; Zhao, X.; Lu, X.; Lin, X.; Zeng, Z.; Xu, G. A Graph Density-Based 905 

Strategy for Features Fusion from Different Peak Extract Software to Achieve More Metabolites in 906 

Metabolic Profiling from High-Resolution Mass Spectrometry. Analytica Chimica Acta 2020, 1139, 907 

8–14. https://doi.org/10.1016/j.aca.2020.09.029. 908 

(77) Brodsky, L.; Moussaieff, A.; Shahaf, N.; Aharoni, A.; Rogachev, I. Evaluation of Peak Picking 909 

Quality in LC−MS Metabolomics Data. Anal. Chem. 2010, 82 (22), 9177–9187. 910 

https://doi.org/10.1021/ac101216e. 911 

(78) Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander, E.; Eisenberg, T.; Madeo, F.; Neumann, S.; 912 

Trausinger, G.; Sinner, F.; Pieber, T.; Magnes, C. IPO: A Tool for Automated Optimization of XCMS 913 

Parameters. BMC Bioinformatics 2015, 16, 118. https://doi.org/10.1186/s12859-015-0562-8. 914 

(79) Delabriere, A.; Warmer, P.; Brennsteiner, V.; Zamboni, N. SLAW: A Scalable and Self-915 

Optimizing Processing Workflow for Untargeted LC-MS. Anal. Chem. 2021, 93 (45), 15024–15032. 916 

https://doi.org/10.1021/acs.analchem.1c02687. 917 

(80) McLean, C.; Kujawinski, E. B. AutoTuner: High Fidelity and Robust Parameter Selection for 918 

Metabolomics Data Processing. Anal. Chem. 2020, 92 (8), 5724–5732. 919 

https://doi.org/10.1021/acs.analchem.9b04804. 920 

Jo
urn

al 
Pre-

pro
of



   

 

43 
 

(81) Guo, J.; Shen, S.; Huan, T. Paramounter: Direct Measurement of Universal Parameters To 921 

Process Metabolomics Data in a “White Box.” Anal. Chem. 2022, 94 (10), 4260–4268. 922 

https://doi.org/10.1021/acs.analchem.1c04758. 923 

(82) Guo, J.; Shen, S.; Xing, S.; Chen, Y.; Chen, F.; Porter, E. M.; Yu, H.; Huan, T. EVA: Evaluation of 924 

Metabolic Feature Fidelity Using a Deep Learning Model Trained With Over 25000 Extracted Ion 925 

Chromatograms. Anal. Chem. 2021, 93 (36), 12181–12186. 926 

https://doi.org/10.1021/acs.analchem.1c01309. 927 

(83) Want, E. J.; Wilson, I. D.; Gika, H.; Theodoridis, G.; Plumb, R. S.; Shockcor, J.; Holmes, E.; 928 

Nicholson, J. K. Global Metabolic Profiling Procedures for Urine Using UPLC–MS. Nat Protoc 2010, 929 

5 (6), 1005–1018. https://doi.org/10.1038/nprot.2010.50. 930 

(84) Schiffman, C.; Petrick, L.; Perttula, K.; Yano, Y.; Carlsson, H.; Whitehead, T.; Metayer, C.; 931 

Hayes, J.; Rappaport, S.; Dudoit, S. Filtering Procedures for Untargeted LC-MS Metabolomics Data. 932 

BMC Bioinformatics 2019, 20 (1), 334. https://doi.org/10.1186/s12859-019-2871-9. 933 

(85) Ju, R.; Liu, X.; Zheng, F.; Zhao, X.; Lu, X.; Zeng, Z.; Lin, X.; Xu, G. Removal of False Positive 934 

Features to Generate Authentic Peak Table for High-Resolution Mass Spectrometry-Based 935 

Metabolomics Study. Analytica Chimica Acta 2019, 1067, 79–87. 936 

https://doi.org/10.1016/j.aca.2019.04.011. 937 

(86) Fraisier-Vannier, O.; Chervin, J.; Cabanac, G.; Puech, V.; Fournier, S.; Durand, V.; Amiel, A.; 938 

André, O.; Benamar, O. A.; Dumas, B.; Tsugawa, H.; Marti, G. MS-CleanR: A Feature-Filtering 939 

Workflow for Untargeted LC–MS Based Metabolomics. Anal. Chem. 2020, 92 (14), 9971–9981. 940 

https://doi.org/10.1021/acs.analchem.0c01594. 941 

(87) Pirttilä, K.; Balgoma, D.; Rainer, J.; Pettersson, C.; Hedeland, M.; Brunius, C. Comprehensive 942 

Peak Characterization (CPC) in Untargeted LC–MS Analysis. Metabolites 2022, 12 (2), 137. 943 

https://doi.org/10.3390/metabo12020137. 944 

Jo
urn

al 
Pre-

pro
of



   

 

44 
 

(88) Gloaguen, Y.; Kirwan, J. A.; Beule, D. Deep Learning-Assisted Peak Curation for Large-Scale LC-945 

MS Metabolomics. Anal. Chem. 2022, 94 (12), 4930–4937. 946 

https://doi.org/10.1021/acs.analchem.1c02220. 947 

(89) Kantz, E. D.; Tiwari, S.; Watrous, J. D.; Cheng, S.; Jain, M. Deep Neural Networks for 948 

Classification of LC-MS Spectral Peaks. Anal. Chem. 2019, 91 (19), 12407–12413. 949 

https://doi.org/10.1021/acs.analchem.9b02983. 950 

(90) Chetnik, K.; Petrick, L.; Pandey, G. MetaClean: A Machine Learning-Based Classifier for 951 

Reduced False Positive Peak Detection in Untargeted LC-MS Metabolomics Data. Metabolomics 952 

2020, 16 (11), 117. https://doi.org/10.1007/s11306-020-01738-3. 953 

(91) Albóniga, O. E.; González, O.; Alonso, R. M.; Xu, Y.; Goodacre, R. Optimization of XCMS 954 

Parameters for LC–MS Metabolomics: An Assessment of Automated versus Manual Tuning and Its 955 

Effect on the Final Results. Metabolomics 2020, 16 (1), 14. https://doi.org/10.1007/s11306-020-956 

1636-9. 957 

(92) Guo, J.; Yu, H.; Xing, S.; Huan, T. Addressing Big Data Challenges in Mass Spectrometry-Based 958 

Metabolomics. Chem. Commun. 2022, 58 (72), 9979–9990. https://doi.org/10.1039/D2CC03598G. 959 

(93) Giné, R.; Capellades, J.; Badia, J. M.; Vughs, D.; Schwaiger-Haber, M.; Alexandrov, T.; Vinaixa, 960 

M.; Brunner, A. M.; Patti, G. J.; Yanes, O. HERMES: A Molecular-Formula-Oriented Method to 961 

Target the Metabolome. Nat Methods 2021, 18 (11), 1370–1376. https://doi.org/10.1038/s41592-962 

021-01307-z. 963 

(94) Fakouri Baygi, S.; Kumar, Y.; Barupal, D. K. IDSL.IPA Characterizes the Organic Chemical Space 964 

in Untargeted LC/HRMS Data Sets. J. Proteome Res. 2022, 21 (6), 1485–1494. 965 

https://doi.org/10.1021/acs.jproteome.2c00120. 966 

(95) Woldegebriel, M.; Derks, E. Artificial Neural Network for Probabilistic Feature Recognition in 967 

Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Anal. Chem. 2017, 89 (2), 968 

1212–1221. https://doi.org/10.1021/acs.analchem.6b03678. 969 

Jo
urn

al 
Pre-

pro
of



   

 

45 
 

(96) Wang, R.; Lu, M.; An, S.; Wang, J.; Yu, C. 3D-MSNet: A Point Cloud-Based Deep Learning 970 

Model for Untargeted Feature Detection and Quantification in Profile LC-HRMS Data. 971 

Bioinformatics 2023, 39 (5), btad195. https://doi.org/10.1093/bioinformatics/btad195. 972 

(97) Melnikov, A. D.; Tsentalovich, Y. P.; Yanshole, V. V. Deep Learning for the Precise Peak 973 

Detection in High-Resolution LC–MS Data. Anal. Chem. 2020, 92 (1), 588–592. 974 

https://doi.org/10.1021/acs.analchem.9b04811. 975 

(98) Bueschl, C.; Doppler, M.; Varga, E.; Seidl, B.; Flasch, M.; Warth, B.; Zanghellini, J. PeakBot: 976 

Machine-Learning-Based Chromatographic Peak Picking. Bioinformatics 2022, 38 (13), 3422–3428. 977 

https://doi.org/10.1093/bioinformatics/btac344. 978 

(99) Samanipour, S.; O’Brien, J. W.; Reid, M. J.; Thomas, K. V. Self Adjusting Algorithm for the 979 

Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid 980 

Chromatography Profile Data. Anal. Chem. 2019, 91 (16), 10800–10807. 981 

https://doi.org/10.1021/acs.analchem.9b02422. 982 

(100) Woldegebriel, M.; Vivó-Truyols, G. Probabilistic Model for Untargeted Peak Detection in LC–983 

MS Using Bayesian Statistics. Anal. Chem. 2015, 87 (14), 7345–7355. 984 

https://doi.org/10.1021/acs.analchem.5b01521. 985 

(101) Liu, Y.; Yang, Y.; Chen, W.; Shen, F.; Xie, L.; Zhang, Y.; Zhai, Y.; He, F.; Zhu, Y.; Chang, C. 986 

DeepRTAlign: Toward Accurate Retention Time Alignment for Large Cohort Mass Spectrometry 987 

Data Analysis. Nat Commun 2023, 14 (1), 8188. https://doi.org/10.1038/s41467-023-43909-5. 988 

(102) Skoraczyński, G.; Gambin, A.; Miasojedow, B. Alignstein: Optimal Transport for Improved LC-989 

MS Retention Time Alignment. GigaScience 2022, 11, giac101. 990 

https://doi.org/10.1093/gigascience/giac101. 991 

(103) Vitale, C. M.; Lommen, A.; Huber, C.; Wagner, K.; Garlito Molina, B.; Nijssen, R.; Price, E. J.; 992 

Blokland, M.; van Tricht, F.; Mol, H. G. J.; Krauss, M.; Debrauwer, L.; Pardo, O.; Leon, N.; Klanova, 993 

J.; Antignac, J.-P. Harmonized Quality Assurance/Quality Control Provisions for Nontargeted 994 

Jo
urn

al 
Pre-

pro
of



   

 

46 
 

Measurement of Urinary Pesticide Biomarkers in the HBM4EU Multisite SPECIMEn Study. Anal. 995 

Chem. 2022, 94 (22), 7833–7843. https://doi.org/10.1021/acs.analchem.2c00061. 996 

(104) Place, B. J.; Ulrich, E. M.; Challis, J. K.; Chao, A.; Du, B.; Favela, K.; Feng, Y.-L.; Fisher, C. M.; 997 

Gardinali, P.; Hood, A.; Knolhoff, A. M.; McEachran, A. D.; Nason, S. L.; Newton, S. R.; Ng, B.; 998 

Nuñez, J.; Peter, K. T.; Phillips, A. L.; Quinete, N.; Renslow, R.; Sobus, J. R.; Sussman, E. M.; Warth, 999 

B.; Wickramasekara, S.; Williams, A. J. An Introduction to the Benchmarking and Publications for 1000 

Non-Targeted Analysis Working Group. Anal. Chem. 2021, 93 (49), 16289–16296. 1001 

https://doi.org/10.1021/acs.analchem.1c02660. 1002 

(105) Knolhoff, A. M.; Premo, J. H.; Fisher, C. M. A Proposed Quality Control Standard Mixture and 1003 

Its Uses for Evaluating Nontargeted and Suspect Screening LC/HR-MS Method Performance. Anal. 1004 

Chem. 2021, 93 (3), 1596–1603. https://doi.org/10.1021/acs.analchem.0c04036. 1005 

(106) Adams, K. J.; Pratt, B.; Bose, N.; Dubois, L. G.; St. John-Williams, L.; Perrott, K. M.; Ky, K.; 1006 

Kapahi, P.; Sharma, V.; MacCoss, M. J.; Moseley, M. A.; Colton, C. A.; MacLean, B. X.; Schilling, B.; 1007 

Thompson, J. W. Skyline for Small Molecules: A Unifying Software Package for Quantitative 1008 

Metabolomics. J. Proteome Res. 2020, 19 (4), 1447–1458. 1009 

https://doi.org/10.1021/acs.jproteome.9b00640. 1010 

(107) Chaker, J.; Gilles, E.; Monfort, C.; Chevrier, C.; Lennon, S.; David, A. Scannotation: A Suspect 1011 

Screening Tool for the Rapid Pre-Annotation of the Human LC-HRMS-Based Chemical Exposome. 1012 

Environ. Sci. Technol. 2023. https://doi.org/10.1021/acs.est.3c04764. 1013 

(108) Celma, A.; Ahrens, L.; Gago-Ferrero, P.; Hernández, F.; López, F.; Lundqvist, J.; Pitarch, E.; 1014 

Sancho, J. V.; Wiberg, K.; Bijlsma, L. The Relevant Role of Ion Mobility Separation in LC-HRMS 1015 

Based Screening Strategies for Contaminants of Emerging Concern in the Aquatic Environment. 1016 

Chemosphere 2021, 280, 130799. https://doi.org/10.1016/j.chemosphere.2021.130799. 1017 

(109) Gabelica, V.; Shvartsburg, A. A.; Afonso, C.; Barran, P.; Benesch, J. L. P.; Bleiholder, C.; 1018 

Bowers, M. T.; Bilbao, A.; Bush, M. F.; Campbell, J. L.; Campuzano, I. D. G.; Causon, T.; Clowers, B. 1019 

H.; Creaser, C. S.; De Pauw, E.; Far, J.; Fernandez-Lima, F.; Fjeldsted, J. C.; Giles, K.; Groessl, M.; 1020 

Jo
urn

al 
Pre-

pro
of



   

 

47 
 

Hogan Jr, C. J.; Hann, S.; Kim, H. I.; Kurulugama, R. T.; May, J. C.; McLean, J. A.; Pagel, K.; 1021 

Richardson, K.; Ridgeway, M. E.; Rosu, F.; Sobott, F.; Thalassinos, K.; Valentine, S. J.; Wyttenbach, 1022 

T. Recommendations for Reporting Ion Mobility Mass Spectrometry Measurements. Mass 1023 

Spectrometry Reviews 2019, 38 (3), 291–320. https://doi.org/10.1002/mas.21585. 1024 

 1025 

Jo
urn

al 
Pre-

pro
of



Highlights  

• Preprocessing of raw data from suspect screening and non-targeted analysis by liquid 

chromatography coupled to high resolution mass spectrometry (SSA/NTA LC-HRMS) is 

affected by reproducibility and incomplete peak peaking  

• Optimization tools and guidelines were developed to improve SSA/NTA LC-HRMS 

data preprocessing 

• Quality assurance/Quality control provisions for SSA/NTS LC-HRMS data 

preprocessing are proposed to assess performance of preprocessing 

 

Jo
urn

al 
Pre-

pro
of



Declaration of interests 
 

☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

 

Jo
urn

al 
Pre-

pro
of


