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A B S T R A C T   

Human health risk assessment is historically built upon animal testing, often following Organisation for Eco
nomic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of 
human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages 
compared to animal studies. These include a greater focus on the human species and on molecular mechanisms 
and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility 
of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in 
the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies 
(NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). 
The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are 
essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected 
target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest 
in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM 
data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated 
use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges 
and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure 
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assessment and hazard characterization shifting from external exposure and animal dose/response assays to 
animal-free, internal exposure-based NGRA.   

1. Introduction 

Risk assessment for human health due to exposure to chemicals is 
based on four pillars: hazard identification (the toxic effect), hazard 
characterisation (dose–response relationships), exposure assessment 
(quantification of the external and internal exposures), and risk char
acterization. In the risk characterization step, the collected data from the 
previous steps are integrated and analyzed to evaluate the potential 
health risk associated with exposure to chemical(s) (NRC, 2009). 
Quantifying the (potential) human health or environmental risks in a 
given exposure scenario is the most important step in the risk assessment 
process. Traditionally, hazard assessment (covering both hazard iden
tification and characterization) has been based on animal studies with 
the derivation of a point of departure (POD). The POD can be derived 
either as the no-observed-adverse-effect level (NOAEL) or the statistical 
benchmark dose (BMD) and its lower confidence limit, the so-called 
BMDL. In the future, it is expected that there will be a reduction in the 
number of animal experiments in the risk assessment of chemicals (Balls, 
2002; Birnbaum et al., 2016; Dura, 2021). In line with this trend, the 
European Commission adopted a new Chemicals Strategy in 2020, 
committing to the reduction of animal testing and promoting the 
replacement of such methods with alternative approaches (EC, 2020). 
Increased use of in vitro and in silico data for hazard identification and 
hazard characterization is expected to occur and the use of new 
approach methodologies (NAMs) will play an important role in future 
hazard assessment (Thomas et al., 2019; USEPA, 2021). NAMs is an 
umbrella term for many different methods (ECHA, 2016) e.g., in silico, in 
chemico, and in vitro methodologies (Wambaugh et al., 2019a). Several 
academic groups and large EU and US programs are working on the 
NAM concept (Åhs et al., 2022; EPAA, 2023; ICCVAM, 2023; Thomas 
et al., 2018; USEPA, 2021). Some NAMs are already available as Test 
Guidelines of the Organisation for Economic Cooperation and Devel
opment (OECD) and in use (ECHA, 2016; Kavlock et al., 2018; USEPA, 
2018). The NAM approach not only aims to reduce, refine and (poten
tially) replace (the 3Rs) the use of animals for ethical reasons, but also 
follows economic (cost of animal studies) and scientific (human rele
vance) reasons, as well as public expectations. Additional outstanding 
scientific reasons are that traditional risk assessment methods cannot 
evaluate the safety of the increasing number of chemicals on the market 
in a timely manner (Herzler et al., 2021) and that they may have limi
tations in addressing issues such as susceptible populations (Hallier 
et al., 2002), aggregate exposure, and exposure to chemical mixtures (i. 
e. cumulative exposure) (de Jong et al., 2022; Luijten et al., 2023; Pal
locca et al., 2022; Rotter et al., 2018).. Internal exposure estimation 
enables evaluation of simultaneous exposure to multiple chemicals and 
helps assessing the associated risk for human health (Bessems et al.). In 
fact, internal exposure reflects exposure from all sources and routes of 
exposure as a steady state concentration for chemicals with long half- 
lives or as concentration over-time for short-lived chemicals. 

Shifting towards the use of internal concentrations to assess expo
sures to chemicals and their mixtures in human populations requires a 
comprehensive understanding of toxicokinetics (TK). TK investigates a 
compound’s absorption, distribution, metabolism, and excretion from 
the body (ADME). TK processes are specific for each chemical and may 
vary depending on individual factors such as age, gender, ethnicity, and 
health conditions. TK data are vital for understanding (1) bio
transformations of a chemical in the body; (2) the contribution of 
different routes of entry such as inhalation, dermal, and oral to the in
ternal concentrations; and (3) the duration and intensity of internal 
exposure. Internal exposure can be estimated using an appropriate 
exposure biomarker (parent compound or phase I/II metabolite) in its 

corresponding matrices. This estimation is possible with different 
methods such as direct measurements, exposure-biomarker relation
ships, and kinetic models, depending on the available data and the 
specific requirements of the assessment. 

The assessment of exposure by measuring internal concentrations of 
a chemical or its metabolites in the human body (e.g., blood, urine, hair) 
is defined as human biomonitoring (HBM) (Forschungsgemeinschaft 
and Angerer, 2002). HBM provides valuable information on the actual 
internal exposure and potential risks associated with exposure to specific 
chemicals. Internal concentrations can be used for exposure recon
struction using PBK models to infer the exposures that are likely to have 
resulted in the measured biomonitoring results (reverse dosimetry). 
Exposure reconstruction involves the integration of HBM data with 
other sources of information, such as TK data and exposure scenarios, 
and provides a better understanding of the relationship between 
external exposure and internal concentrations (Brown et al., 2015; 
Dopart and Friesen, 2017; Huuskonen et al., 2022). Thus, to comple
ment HBM data, contextual information concerning exposure (e.g., 
exposure scenarios, risk management measures (RMM) in place) should 
be collected and described as detailed as possible. 

The integration of NAMs into risk assessment, despite its challenges 
(ECHA, 2016; Westmoreland et al., 2022), is increasingly recognized in 
regulatory frameworks and supports a progressive shift towards Next 
Generation Risk Assessment (NGRA). For instance, the Roadmap for 
Action on NAMs in Risk Assessment of the European Food Safety Au
thority (EFSA) and the associated projects (e.g. ADME4NGRA) witness 
this conceptual evolution in the area of dietary exposure to chemicals, i. 
e., food safety within the EU (Cattaneo et al., 2023; Escher et al., 2022). 
A key aspect of this shift is the integration of physiologically based ki
netic (PBK) modelling and HBM data in risk assessment (ZareJeddi et al., 
2022). PBK mathematical models are a helpful tool for incorporating 
data from multiple routes and sources of exposure; these models are 
parameterized using in vitro, in vivo, and in silico methods facilitating the 
extrapolation of external exposure scenarios to generate internal expo
sure estimates at target organs over time. For instance, the use of PBK 
modelling in chemical risk assessment (CRA) has shown how these 
models can fill data gaps, reduce uncertainties, and enhance chemical 
safety evaluations (Apel et al., 2020). 

An interdisciplinary network of experts in different regulatory and 
research roles under the umbrella of the European Regional Chapter of 
the International Society for Exposure Science (ISES Europe1) aims to 
advocate the use of biomonitoring in occupational and environmental 
health (ZareJeddi et al., 2022). In this paper, we stress the importance of 
integrating HBM data with TK and PBK modeling as standard practice in 
human health risk assessment. This study will evaluate three of the main 
factors necessary to achieve this goal:  

• First, to show how HBM and toxicokinetics/PBK modelling are 
interlinked and can enhance each other.  

• Second, to evaluate the potential of PBK modelling and HBM to serve 
as an effective approach in risk assessment. 

• Third, to make recommendations for the implementation and inte
gration of PBK modelling and HBM within existing frameworks for 
chemical risk assessment. 

2. HBM and toxicokinetics 

Several concepts have to be understood to use HBM to its full 

1 https://ises-europe.org/. 
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potential in exposure assessment (Viegas et al., 2020). Humans are 
exposed to chemicals from various routes (oral, dermal, and inhalation), 
and sources (consumer products, diet, and indoor/outdoor environment 
including workplaces). HBM provides an estimate of a population’s 
exposure to chemicals from all possible sources and routes of exposure. 
These chemicals may have different effects on organs and systems in the 
body. Internal exposure at target organ or tissue is the gold standard of 
exposure assessment; however, this could be difficult to measure in 
human populations. Therefore, HBM using less invasive matrices such as 
blood and milk, and non-invasive matrices like urine and hair, is 
considered the best alternative and most appropriate tool for assessing 
human (co)exposure to chemicals,23 (Manno et al., 2010; Zare Jeddi 
et al., 2022). Linking longitudinal HBM results with epidemiological and 
toxicological data can bridge exposures with health effects and inform 
on public health measures in place or to be adopted (Huuskonen et al., 
2023; Santonen et al., 2023). 

Human TK is particularly relevant in determining the sampling 
strategy in HBM campaigns (Claire and Sean, 2022; Coecke et al., 2013). 
TK data of a substance help in determining the most relevant specific 
biomarkers in HBM samples, i.e., parent compound or metabolites, and 
the most appropriate HBM matrix (e.g., whole blood, blood serum, 
urine) as well as the frequency and duration g of the sampling. Stanfield 
et al. (2022) employed a Bayesian methodology to infer ranges of 
exposure combining urinary measures of parent chemicals from the (US 
CDC) NHANES and other relevant sources with chemical metabolism 
information. Their study provided valuable insights into the mapping of 
parent chemical-metabolite relationships, contributing to the refine
ment of HBM strategies. The different routes of exposure have their own 
toxicokinetic and toxicodynamic characteristics, which may have 
impact on the appropriate sampling strategy. Information on absorption 
rates, metabolites formed, degree of excretion on a molar or mass basis, 
and half-lives helps to identify the most appropriate exposure window of 
particular biomarkers, i.e., the timeframe of exposure that is reflected in 
the measurement. Distinct chemical properties exert influence over 
human exposure and the toxicokinetics of chemicals with different 
properties. Li et al. (2019) explored the relative importance of near-field 
and far-field exposure routes for organic chemicals released to indoor 
air. Their external exposure model results indicated that dietary and 
nondietary ingestion dominate human exposure to hydrophobic chem
icals of relatively low volatility, while inhalation of indoor air is the 
primary exposure route for volatile chemicals. Other routes, such as 
dermal and oral routes via drinking water, contribute relatively less to 
human exposure. Olsen et al. (2023) investigated the dosimetric rela
tionship between exposure to a chemical contaminant and its concen
trations in blood and urine. They used a toxicokinetic model to quantify 
the absorption and elimination of chemicals and found that the dose-to- 
concentration ratio depends on fundamental chemical properties such as 
partition coefficients and biotransformation half-lives. Chemicals with 
low volatility and moderate to high hydrophobicity exhibited higher 
concentrations in the blood, while chemicals undergoing significant 
biotransformation showed lower concentrations in blood compared to 
those with negligible biotransformation but similar partitioning prop
erties. Chemicals with high hydrophilicity had the highest concentra
tions in urine. These property dependencies were observed across 
different age groups and body weights. 

Choosing one or more specific biomarkers of exposure (i.e., the 
parent compound, the metabolites or both) that are robust and sensitive 
enough to quantify external exposures is essential as a poor choice in 
biomarkers could result in over or under estimation of exposures 
(Kolossa-Gehring et al., 2017). Note that some substances form the same 
metabolites, which will not provide a compound specific biomarker of 

exposure and the respective exposure levels. One such case is for di(2- 
ethylhexyl) adipate, whose major metabolite is adipic acid, a non- 
specific biomarker (Nehring et al., 2020). Relevant biomarkers can be 
identified reviewing chemical structures and postulating potential bio
markers from animal metabolism studies (Zbinden, 1991), and human in 
vitro and in vivo metabolism studies (Koch et al., 2013b; Nehring et al., 
2019; Schütze et al., 2012; Wrobel et al., 2022). Human metabolism 
studies have been conducted, inter alia, for phthalates and their sub
stitutes (Koch et al. 2014a; Lessmann et al., 2016; Schütze et al., 2017), 
solvents (Koch et al. 2014a), cosmetics additives/UV-filters (Bury et al. 
2019a; Bury et al. 2019b), plant-protection products like pyrethroids 
(Schettgen et al., 2016), and also for pharmaceuticals such as paracet
amol that can accumulate in humans from non-intentional exposure 
(David et al., 2021). For example, in a ten-year joint project between the 
German Ministry for the Environment and the German Chemical In
dustry Association, human metabolism studies conducted to investigate 
50 new substances of interest, such as plasticizer substitutes, novel UV- 
filters, solvents, and other prioritized chemicals, spurred the develop
ment of new and specific analytical methods for HBM that could then be 
applied in suitable population surveys and in the derivation of 
toxicologically-based HBM values for seven chemicals (Kolossa-Gehring 
et al., 2017). At present, many in silico structure-based tools are available 
to predict the metabolism of chemicals (Litsa et al., 2021; Tyzack and 
Kirchmair, 2019). These tools help generating suspect screening lists to 
guide data analysis (Boyce et al., 2023) from in vitro and in vivo meta
bolism studies and are recommended to interpret HBM data (Daiber 
et al., 2024; Steckling et al., 2018). 

As mentioned, understanding the TK of a compound is essential for 
developing the HBM sampling strategy campaign, including information 
on choosing the sampling times and the appropriate number of samples 
to collect (in particular for non-persistent chemicals with short half-life) 
e.g., for occupational studies and consumer products used at specific 
times of day or year (e.g., summer for using UV protection products) 
(Koch et al., 2014b). This can reduce the number of samples required to 
have a representative dataset to evaluate exposures, reduce costs and 
reduce the burden of the study for participants (Connolly et al., 2018; 
Kohsuwan et al., 2022; Scher et al., 2007). HBM data for a chemical are 
the result of aggregate exposure to that chemical from all possible source 
and routes of exposure. For example, an HBM intervention study on high 
molecular weight (HMW) phthalates (Koch et al., 2013a; Koch et al., 
2013b) showed that the main exposure route for HMW phthalates pre
dominately ingestion, while for low molecular weight (LMW) phthalates 
major routes of exposure (>50 %) seemed to be inhalation/dermal 
(Weschler et al., 2015). Thus, authors concluded that food contamina
tion needed to be reduced to significantly reduce overall HMW phthalate 
exposure, while all sources (including indoor sources) were relevant for 
LMW phthalates. A similar approach has been successfully undertaken 
for BPA, identifying contaminated foodstuff as the major source of BPA 
exposure (Christensen et al., 2012). In a duplicate diet study that 
analyzed plasticizers in a total daily diet, and in parallel analyzed for 
urinary biomarkers of the participants, the comparison of the two intake 
estimates enabled the identification of the dominant intake source. For 
some plasticizers food ingestion was the dominant source (agreeing food 
intake estimates with HBM data), whereas for other phthalates other 
non-foodstuff sources contributed the dominant part of the total intake 
(Fromme et al., 2013). This type of information could support strategies 
and policies for RMMs, such as dedicated policies in different regulatory 
frameworks. In occupational settings, typical strategies are to collect 
pre- and post-work shift samples (Connolly et al., 2017), or for chemical 
substances that may accumulate over a workweek one urine sample at 
the beginning of the work week pre-shift and one urine sample at the end 
of the week post-shift. Next morning samples are used to identify 
delayed excretion kinetics (Jones et al., 2022). Also 24 h urine samples 
can be collected, although they are less commonly used (Connolly et al., 
2018). These types of sampling strategies will provide an overview and 
potential accumulation of the exposure over the work period (Santonen 

2 https://www.cdc.gov/nchs/nhanes/index.htm.  
3 https://www.oecd.org/env/ehs/risk-assessment/occupational-biomonito 

ring.htm. 
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et al., 2022). 
With the vast increase of initiatives supporting the development of 

HBM (e.g., HBM4EU,4 PARC,5 OECD6) it is essential to have appropriate 
and harmonized means for conducting and interpreting these datasets, 
and at the same time have fit for purpose approaches depending on the 
differences between compounds of interest and regulatory needs. Direct 
HBM data interpretation for risk assessment purposes is possible by 
comparing the concentration of the biomarkers detected in the different 
matrices to accepted levels of the specific indicators, i.e., the human 
biomonitoring guidance values (HBM-GVs), as estimated with infor
mation from forward dosimetry in TK, in compliance to the external 
acceptable levels of exposure (e.g., HBGVs). HBM-GVs correspond to the 
concentration of a chemical in a human biological matrix (e.g., urine, 
blood, hair) at and below which adverse health effects related to the 
chemical exposure are not to be expected to occur, according to the 
current knowledge. HBM-GVs for occupational exposures are called 
biological limit values (BLV).7 HBM-GVs may considerably reduce the 
uncertainty in human health risk assessment classically performed solely 
on external exposure estimates (Lamkarkach et al., 2022; Lamkarkach 
et al., 2021). Also, they can easily be used to communicate potential 
public health risks to policymakers (Apel et al., 2020). 

In 2017–2021, European Joint Programme HBM4EU produced a 
harmonized methodology to derive HBM-GV (Ganzleben et al., 2017) 
and derived a set of new HBM-GVs for the project’s priority substances 
for the general population and workers (Apel et al., 2023; Apel et al., 
2020; Lamkarkach et al., 2021; Lange et al., 2021; Meslin et al., 2022). 
This work is continued in the PARC project (Partnership for the 
Assessment of Risks from Chemicals) (Marx-Stoelting et al., 2023; PARC 
2023a; b). The i-HBM Working Group of the International Society of 
Exposure Science (ISES) is periodically updating an inventory of HBM- 
GV derived by different organizations8 (Nakayama et al., 2023). The 
list contains general population guidance values (GVs) for 140 chemicals 
of which 81 % are biomonitoring equivalents (BEs) and 14 % HBM-GV. 
BEs are derived from existing external exposure HBGVs for the general 
population, with no further appraisal of toxicity or epidemiological data 
(Angerer et al., 2011; Hays and Aylward, 2009; Hays et al., 2008; Hays 
et al., 2007) (Angerer et al., 2011; Bevan et al., 2012; Hays and Aylward, 
2009). In the HBM4EU initiative, the preferred method to establish 
HBM-GVs is based on the relationship between biomarker levels and the 
most sensitive health effects (Apel et al., 2020). If human data are not 
available or sufficient to derive an HBM-GV, then an HBGV (e.g, TDI) 
can be used to derive a BE. It is worth noting that the HBM-GV calcu
lation frequently assumes that the steady-state is reached for a substance 
in a certain biological matrix. In the absence of human internal exposure 
data, HBM-GVs can be derived from external exposure GVs or limit 
values using external-internal exposure associations or PBK modelling 
(Fig. 1: the link between external GVs and internal GVs, with the latter 
representing HBM-GVs). PBK modelling may reduce the use of uncer
tainty factors applied to the HBM-GV derivation which are not arbitrary 
but mathematically imprecise (Dankovic et al., 2015). In the absence of 
external GVs, HBM-GVs can be derived from a POD in an experimental 
(animal) study (Fig. 1: the link between POD and HBM-GV). In the 
occupational field, other derivation methods are explained in an OECD 
guidance document (GD) on occupational biomonitoring.9 The very low 
number of HBM-GVs and BEs is one of the main obstacles of using HBM 
data in risk assessment of chemicals (Apel et al., 2020; Louro et al., 

2019). Yet, the rapid progress in the HBM4EU project has demonstrated 
that the generation of a considerable number of new HBM-GVs can be 
achieved in a rather short time, if reliable hazard characterization data, 
and relevant TK data, PBK models and HBM data are present for the 
respective substances (Apel et al., 2023). 

3. HBM and PBK modelling 

PBK modelling is a necessary tool for the establishment of HBM-GVs 
for a specific chemical in compliance with the external HBGV or the 
POD. A PBK model is a set of mathematical equations that describe in 
quantitative terms the ADME processes of a chemical in the body. As a 
result, a PBK model predicts the time course of a chemical in an or
ganism and the concentration at the target tissue or in a relevant bio
logical matrix following human or animal exposure to that chemical. 
Fig. 1 shows where PBK modelling can be integrated in exposure 
assessment and hazard characterization. Fig. 1 also shows how HBM and 
HBM-GV are combined to calculate the risk characterization ratio (RCR) 
in risk characterization, similarly to RCR for external exposure. PBK 
modelling can be conducted using various commercial software such as 
Simcyp/SIVA,10 Gastroplus,11 or open-source software, PK-Sim,12 

IndusChemFate13 and httk,14 among others that are freely available. 
Input data for PBK models are physiological data of the exposed species 
(e.g., organ volumes, cardiac outputs to the different organs, urine 
excretion rate), as well as chemical-specific parameters, such as physico- 
chemical (e.g., blood-tissue partition coefficients) and TK properties (e. 
g., absorption rate, fraction unbound in plasma and tissues, renal 
clearance, metabolic clearance). Parameters can be obtained from in 
vivo, in vitro, and in silico studies. A comprehensive list of available PBK 
software and tools to parameterize PBK models is available in the Sup
plemental Excel Sheet of Chang et al. (Chang et al., 2022). Results from a 
similar mapping exercise are also available from the International So
ciety for Exposure Science European reginal chapter (ISES Europe) 
exposure modelling working group (Schlüter et al., 2022) and Madden 
et al. (Madden et al., 2020). 

It is worth noting that the uncertainties in the in vitro and in silico 
methods used to generate these parameters and the inter- and intra- 
species variability of in vivo data lead to uncertainties in the PBK 
model predictions. Both variability and uncertainty analyses are 
important considerations in PBK modeling, especially if models are used 
in regulatory assessments, as they provide a measure of confidence in 
the model predictions (OECD, 2021). Variability is inherent to the nat
ural difference or variations observed among individuals in terms of 
physiological factors (e.g. body weight, cardiac output) and cannot be 
eliminated. In PBK modeling, variability is incorporated by considering 
a distribution of parameter values rather than assuming a single fixed 
value for each parameter and using approaches such as Monte Carlo 
sampling (OECD, 2021). The distribution of physiological parameters 
can be set for specific ethnic populations and subpopulations (e.g. 
adults, children, males, females) (Ring et al., 2017). Such an approach 
leads to a more realistic distribution of internal concentration estimates 
and allows the identification of potentially sensitive subpopulations. 
Uncertainty refers to the lack of knowledge or the presence of potential 
errors in the input parameters (e.g. in vitro experimental and measure
ment errors, in silico calculation error), assumptions, or model structure 
used in PBK modeling (OECD, 2021). Like for variability, uncertainty 
analysis is carried out informing distributions around input parameters 
and generating probabilistic PBK models. Wambaugh et al., (2019b) 

4 https://www.hbm4eu.eu/.  
5 https://www.eu-parc.eu/.  
6 https://www.oecd.org/chemicalsafety/risk-assessment/occupational-bio 

monitoring-guidance-document.pdf.  
7 https://inis.iaea.org/search/search.aspx?orig_q=RN:52095954.  
8 https://biomonitoring.shinyapps.io/guidance/.  
9 https://www.oecd.org/env/ehs/risk-assessment/occupational-biomonito 

ring.htm. 

10 https://www.certara.com/software/simcyp-in-vitro-data-analysis-tool 
kit-siva/.  
11 https://www.simulations-plus.com/software/gastroplus/pbpk-software/.  
12 https://www.open-systems-pharmacology.org/.  
13 https://cefic-lri.org/toolbox/induschemfate/.  
14 https://cran.r-project.org/web/packages/httk/index.html. 
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used Bayesian methods to determine uncertainty estimates for chemical- 
specific parameters (i.e. in vitro fraction unbound in plasma and intrinsic 
hepatic clearance (CLint), followed by Monte Carlo simulations to ac
count for variability-only, uncertainty-only, and both uncertainty and 
variability. Carrying out separate variability and uncertainty analysis 
showed that for most of the studied chemicals the population variability 
contributes in larger extent than uncertainty to model output distribu
tions. In general, parameters that exhibit significant uncertainty and 
most influence model output are the CLint and the fraction unbound in 
plasma (fu,p). CLint values can differ by more than one order magnitude 
due to the specific in vitro protocols used in different experiments 
(Louisse et al., 2020). It is worth noting that while variability cannot be 
eliminated, uncertainty can be reduced by improved data. A modified 
protocol for determining in vitro fu,p at different plasma protein con
centrations significantly reduced the uncertainty associated with fu,p 
measurements (Wambaugh et al., 2019b). Overall, these findings 
emphasize the importance of setting harmonized in vitro methods to 
generate robust TK parameter values for PBK models. 

Extrapolations are possible by modifying the model’s parameters. 
For example, physiological and TK parameters can be adapted to 
extrapolate predictions for different species, as well as for different ages 
and health conditions, e.g., babies, older individuals (Hopf et al., 2012), 
and pregnant women (Louisse et al., 2010). Physico-chemical and TK 
parameters can be modified to extrapolate a chemical’s PBK model to 
other chemicals with similar TK and mode of action (this being a read 
across approach) (Louisse et al., 2010). Also, extrapolation for different 
routes of exposure and different exposure scenarios is possible, as PBK 
models include equations that represent one or more routes of exposure. 
For example, a human oral PBK model can be adapted to represent 
dermal exposure, predicting blood concentrations upon dermal expo
sure to the chemical for which the oral model was initially developed 
(route-to-route extrapolation) (Bessems et al., 2017). A PBK model 
validated on human data based on a specific exposure scenario can be 
adapted to represent an occupational exposure scenario with different 

workload and exposure duration (scenario-to-scenario extrapolation), or 
the same scenario but at a different dose (dose-to-dose). Model pre
dictions of internal exposures from external exposure data are called 
forward dosimetry. 

PBK models can also be used for the reversed process, i.e., the reverse 
dosimetry, predicting external exposure concentrations from internal 
concentrations of biomarkers of exposure. For example, reverse dosim
etry can estimate the external exposure that would result from a specific 
concentration at target tissue or a measured concentration of a 
biomarker of exposure in different matrices.15 This approach is partic
ularly important for in vitro – in vivo extrapolation (IVIVE): PBK 
modelling can extrapolate in vitro effect readouts (in vitro concen
tration–response results at tissue or cellular level) to the in vivo situation 
(in vivo dose–response data). Chang et al. (Chang et al., 2022) (see 
supplementary material therein) summarizes commonly used terms of 
IVIVE approaches that are relevant also to TK. The in vivo data estimated 
from in vitro concentration–response assays represent concentrations at 
target tissue. These target tissue concentrations can be correlated with 
internal concentrations through PBK modelling, which are commonly 
measured in blood and urine. With proper evaluation of the un
certainties derived from in vitro data and PBK model predictions, this 
approach allows the generation of HBM-GV. IVIVE procedures, when 
applied in PBK modeling, can address data gaps for “data-poor” chem
icals (Breen et al., 2021). The use of generic PBK models, such as the 
httk16 method, enables the extrapolation of in vitro toxicokinetic data for 
rapid chemical screening and prioritization. The extrapolation of 
metabolism data from in vitro experiments to in vivo clearances is crucial 
in toxicokinetics for assessing the risks associated with specific chem
icals. Different toxicokinetic models are used for various extrapolation 

Fig. 1. Risk assessment shifting from external exposure and animal dose/response assays to next generation animal-free, internal exposure-based risk assessment. 
The arrows show the link between different steps in risk assessment. The blue hexagon shapes indicate PBK modelling. Some examples of possible applications of PBK 
modelling are given (numbers in the hexagons refer to the manuscript chapters; NC, PBK modelling application is not in the scope of NGRA). Data necessary to 
parameterize PBK models are shown in the white background rectangle. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

15 https://www.epa.gov/expobox/exposure-assessment-tools-approaches-e 
xposure-reconstruction-biomonitoring-and-reverse.  
16 https://cran.r-project.org/web/packages/httk/index.html. 
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goals, such as hepatic blood clearance, organ clearance, whole-body 
clearance, and clearance at the level of hepatocytes. Krause and Goss 
(2018) developed a comprehensive toolbox for in vitro-in vivo extrapo
lation (IVIVE) of hepatic metabolism, including a sensitivity analysis to 
identify parameters that significantly impact the accuracy of the 
extrapolation results (i.e. in vitro clearance value, metabolically active 
components, unbound fractions, and partition coefficient). IVIVE relies 
on the assumption that in vitro metabolism data accurately represents in 
vivo clearance, assuming similar metabolic pathways and enzymes be
tween in vitro and in vivo systems. However, uncertainties exist that can 
affect IVIVE predictions, including differences in measured intrinsic 
clearance between in vitro and in vivo systems and variations in the 
unbound fraction of chemicals due to binding to plasma proteins (Krause 
and Goss, 2021). 

To compare IVIVE extrapolated data with direct in vivo measure
ments, researchers analyze key toxicokinetic parameters such as oral 
bioavailability, clearance, volume of distribution (Vd), and uncertainty. 
Wambaugh et al. (2018) conducted in vivo rat experiments for non- 
pharmaceutical chemicals and found that predictions for bioavail
ability were ineffective, while total clearance was generally under
estimated. However, predictions for steady state, peak, and time- 
integrated plasma concentrations were reasonably accurate, and incor
porating experimental measurements of bioavailability improved 
plasma concentration predictions. 

High-quality HBM data are essential to validate human PBK model 
predictions but are affected by interindividual variability (Aylward 
et al., 2014). It is possible to add a distribution to each PBK parameter to 
account for this (McNally et al., 2021). Societal and regulatory re
quirements usually drive compound-specific models. Large targeted 
HBM campaigns can greatly facilitate model parameterization for 
compound-specific models. There is a positive feedback loop whereby 
PBK models (e.g., via sensitivity analysis) highlight specific areas where 
focused efforts should produce better TK data that, in turn, improve the 
model predictions. 

Models are more or less complex depending on compound properties 
and parameter availability. More detailed predictions can be made for 
single chemicals when more data are incorporated into a model, 
whereas general predictions are made for large groups of data-poor 
chemicals (as in high-throughput bioactivity screening) (Chang et al., 
2022). The higher-throughput approaches have the advantage for speed 
and flexibility but have limitations e.g., model evaluation. Pletz et al. 
(Pletz et al., 2020) investigated the suitability and limitations of generic 
PBK models (httk17 and IndusChemFate18) in deriving HBM-GV values 
for several compounds with a view to facilitating the use of HBM data in 
the assessment of chemical mixtures at a screening level. The analysis 
showed that the application of PBK models provides a better under
standing and interpretation of HBM data. However, it also showed 
limitations e.g., establishing safety threshold levels in urine is a difficult 
and complex task. The approach might be more straightforward for 
more persistent chemicals that are analyzed as parent compounds in 
blood (Pletz et al., 2020). 

4. Integrating PBK modelling and HBM in risk assessment 

The potential advantages of integrating TK data and modelling in 
human risk assessment based on HBM are numerous. For example, in 
hazard characterization PBK modelling can derive HBM-GVs from in 
vitro and in vivo dose–response studies, as well as from external HBGVs, 
replacing the use of some default extrapolation factors used in route-to- 
route or interspecies extrapolations. In exposure assessment, PBK 
modelling can predict internal concentrations based on external expo
sure (and vice-versa), improve the interpretation of HBM data, e.g., by 

accounting for internal concentration variability due to factors such as 
age and gender, and can extrapolate HBM data to other populations or 
different exposure scenarios. 

4.1. Hazard characterization: Deriving HBM-GV and BE 

4.1.1. Deriving BEs and BLVs from established HBGVs 
Forward dosimetry using a PBK model for a chemical with an HBGV 

can predict the corresponding internal concentration of a specific 
metabolite or parent compound in a biological matrix (bioequivalent). 
This approach was used to derive an HBM-GV for bisphenol A (BPA) in 
the general population by Ougier et al. (2021). An existing PBK model 
for BPA was used to calculate BPA concentrations in urine considering 
steady state exposure at the tolerable daily intake (TDI) established by 
EFSA, and assuming constant exposure to BPA only through the oral 
route. In the case of o-toluidine risk assessment, BE were derived by 
using a urinary mass balance approach and a general PBK model 
(Huuskonen et al., 2022). O-toluidine is in the candidate list for 
authorization under REACH regulation,1920 and this example could 
facilitate the use of HBM data in possible future authorization processes. 

In the occupational context, BLVs are generally derived by using 
measured correlation data to convert external levels to internal ones. 
However, often there is a poor correlation between external and internal 
occupational exposure levels, e.g., due to skin exposure contributing to 
the overall internal concentration in addition to inhalation exposure, or 
when the correlation was not based on personal air sampling, but rather 
on space sampling, or the use of respiratory protection, and the role of 
the ingestion route due to hand-to-mouth contact. PBK models can help 
to predict the probability of different routes of entry and derive the 
appropriate HBM value. The Scientific Committee on Occupational 
Exposure Limits (SCOEL) used PBK modelling to set BLVs for 2-methox
yethanol and its acetate, which are very well absorbed through the 
skin.21 This approach was also used within HBM4EU project for ca
shiers’ BPA exposure through the handling of thermal papers, resulting 
in BPA exposure via dermal absorption due to skin contamination 
(Ougier et al., 2021). However, the HBM-GV value for urinary BPA in 
occupationally exposed adults was lower than the 95th percentile of 
urinary total BPA distributions in the general population. Therefore, no 
HBM-GV was recommended for occupational health risk assessments 
and for identifying risky occupational exposures. 

A PBK model for arsenic exposure has been reported (Mann et al., 
1996) and was validated for inhalation exposure using data on urinary 
excretion after occupational exposure to arsenic trioxide dust and fumes. 
The model was adapted to humans from an animal model, with ad
justments for body weight, metabolic rates, and absorption rates. The 
model describes ADME for the four major urine metabolites for inor
ganic arsenic (i.e., arsenate, arsenite, methyl arsonate, and dimethyl 
arsinate). The model was used to predict urinary inorganic arsenic me
tabolites from an inhalation exposure of 10 μg/m3 (8 h time weighted 
average (TWA), the then current ACGIH Threshold Limit Value) inor
ganic arsenic, leading to an estimate of 25 μg/g creatinine (sum of the 
four metabolites) after 5-days of exposure. This prediction was used to 
support the ACGIH Biological Exposure Index published in 2000.22 

BE values were proposed for general population exposure to benzene 
(Hays et al., 2012) using existing PBK models. A variety of US govern
ment risk assessment values (including the USEPA chronic reference 
concentration) were translated into corresponding benzene levels in 

17 https://cran.r-project.org/web/packages/httk/index.html.  
18 https://cefic-lri.org/toolbox/induschemfate/. 

19 https://echa.europa.eu/candidate-list-table/-/dislist/details/0b0236e 
1807dbdfe.  
20 https://echa.europa.eu/substance-information/-/substanceinfo/100.002. 

209.  
21 https://ec.europa.eu/social/main.jsp?catId=148&langId=en&intPage 

Id=684.  
22 https://www.acgih.org/arsenic-and-its-inorganic-compounds/. 
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blood, assuming chronic steady state exposures. Numerous PBK models 
have been developed for benzene in rodents and humans. The authors 
deliberately chose the simplest PBK model (Brown et al., 1998) that was 
still consistent with available human TK data from controlled exposures. 
As the study focused on deriving BE values by estimating steady-state 
benzene concentrations in blood (and corresponding urine concentra
tions), the Brown et al., 1998 model, being the simplest yet consistent 
with the study’s objectives, was utilized for BE derivation. In their 
derivation of BE values for benzene in blood, the authors classified the 
robustness of the TK data and model as relatively high because the 
model was parameterized based on data from several controlled human 
exposure studies. On the other hand, TK data and PBK models for BE 
values in urine were considered of low robustness because none of the 
available controlled human exposure studies measured urinary benzene 
concentrations, nor any of the models predicted urinary benzene 
excretion. For the derivation of BE values in blood, the relevance of the 
biomarker (blood benzene) was medium-rated as it is not the immediate 
toxicant. However it was considered more relevant than urinary ben
zene, which was also modelled. 

4.1.2. Deriving external Health-Based GV from HBM-GV 
PBK models can be used for external concentration reconstruction 

through reverse dosimetry for an established exposure scenario. In this 
approach, internal chemical-exposure measured in biomonitoring sam
ples are converted via PBK modelling to the corresponding external 
exposure levels. This approach has been instrumental in the increasing 
use of human data from epidemiological studies, accompanied by 
biomarker data in food safety risk assessment. For instance, in EFSA 
studies, blood/serum concentrations related to health effects in humans 
were used to derive NOAEL or BMDL values. These values were then 
converted to external exposure levels and led to the identification of 
tolerable weekly intakes (TWI) for, e.g., dioxins and dioxin-like PCBs 
(EFSA Panel on Contaminants in the Food Chain et al., 2018) and per
fluoroalkyl substances (PFAS) (EFSA Panel on Contaminants in the Food 
Chain et al., 2020). 

In 2020, the Risk Assessment Committee of the European Chemicals 
Agency (ECHA RAC) used this approach in an opinion document on the 
occupational exposure limit (OEL) of lead (Pb).23 An OEL for airborne 
lead was derived from lead BLV on the basis of an existing PBK model. 
The aim was to set an air concentration limit value that would not result 
in the exceedance of health based BLV even after repeated exposure. 
Reverse PBK modelling has been used also in food safety risk assessment 
for lead in food (EFSA Panel on Contaminants in the Food Chain, 2010). 

4.1.3. Deriving external Health-Based GV from human external exposure – 
Response data 

PBK modeling can be used to derive an external HBGV if no HBM-GV 
exist but human internal exposure – response data are available. The 
ECHA RAC used ATSDR (2012)24 existing reverse dosimetry with PBK 
models for cadmium, which causes a risk for renal and bone effects. 
Although airborne OEL was based on local lung effects, PBK model was 
used to ensure that those air levels do not result in toxicologically 
relevant systemic exposure (or increased urinary Cd levels).25 

4.1.4. Deriving HBM-GV from POD of animal data 
Animal dose–response studies are used to establish a POD. The POD 

is the highest dose level in a dose–response curve at which no or low 
adverse effect is observed in the most sensitive and relevant species. The 
POD can be the NOAEL or, in the absence of NOAEL, the lowest dose that 
triggers the adverse effect (lowest-observed adverse effect level, 

LOAEL). Furthermore, the POD can be statistically determined as BMDL. 
In inhalation exposure, the POD can be no-observed adverse effect 
concentration (NOAEC), low-observed adverse effect concentration 
(LOAEC), or the benchmark dose concentration (BMCL). The severity 
and potency of the observed adverse effects are relevant parameters to 
consider when selecting a POD. In general, the first adverse effect that 
occurs at the lowest concentration determines which study will be used 
to derive a POD. The identified POD in a critical animal study can be 
converted into a human internal concentration of a biomarker. The POD 
is set as the dose in an animal PBK model and the extrapolation to a 
human PBK model leads to the prediction of a corresponding human 
biomarker concentration, which could be potentially used as HBM-GV. 
The US National Institute for Occupational Safety and Health (NIOSH) 
established a recommended exposure limit (REL) for diacetyl based on 
PBK modelling to extrapolate rodent benchmark concentration esti
mates to human exposures.26 In another example, OELs were proposed 
for N-methylpyrrolidone based on PBK modelling to calculate human 
equivalent concentrations of animal-based POD values for develop
mental effects (Poet et al., 2016). A further illustration of this approach 
is seen in the EFSA recent evaluation of BPA. In this evaluation, EFSA 
used human toxicokinetic data, which facilitated the identification of 
the area under the curve (AUC) and calculation of the human equivalent 
dose factor. This data was instrumental in the animal to human 
extrapolation process for BPA risk assessment (EFSA Panel on Food 
Contact Materials et al., 2023). 

In many instances, uncertainty factors are employed during the 
extrapolation process to account for inter-species differences and vari
ability in human populations. Despite this approach, utilizing rodent 
data for predicting PODs in humans has inherent limitations. These 
include variations in metabolic pathways, differences in physiological 
parameters, and potential species-specific responses to a chemical. 
Additionally, the reliance on animal models may not fully capture 
certain human-specific susceptibilities. These caveats emphasize the 
need for careful consideration and interpretation when utilizing animal 
data to predict human PODs and subsequent HBM-GVs based on 
biomarker concentrations. 

4.1.5. Deriving HBM-GVs from in vitro toxicity studies 
In vitro dose–response studies can be used to establish a POD. In a 

human PBK model for a studied toxicant, the predicted concentration in 
blood or at the target organ is assumed to be equal to the in vitro 
determined POD (Rotroff et al., 2010; Wetmore et al., 2012). The human 
PBK model can predict the toxicant’s concentrations in a biological 
medium (e.g., blood, urine) corresponding to the in vitro POD. The 
predicted concentrations in the biological matrix can then be used as 
HBM-GV. For example, in vitro toxicity data were combined with human 
PBK model to predict dose–response curves for developmental toxicity 
of glycol ethers (Louisse et al., 2010). 

4.1.6. Extrapolating HBM-GVs to different populations, chemicals, and 
exposure scenarios 

New HBM-GVs for other chemicals, populations, and exposures 
might be derived from established values by extrapolation with PBK 
modelling. For example, an HBM-GV for workers could be used to derive 
a guidance value for a vulnerable population such as pregnant workers 
(same exposure but different population) or for the general population 
(different exposure and different population). This seems to be a rather 
unexplored avenue for generating new HBM-GVs when no or few data 
are available. The HBM4EU programme established a HBM-GV for uri
nary cadmium (U-Cd) in the general population, and used a PBK model 
to derive “alert” values of U-Cd according to age (Lamkarkach et al., 
2021). 

23 https://echa.europa.eu/documents/10162/ed7a37e4-1641-b147-aaac 
-fce4c3014037.  
24 https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf.  
25 20958724-bcdb-e18d-db23-48ded07496cf (europa.eu). 26 Occupational Exposure to Diacetyl and 2,3-Pentanedione | NIOSH | CDC. 
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4.2. Exposure assessment 

PBK modelling can improve the interpretation of HBM data by pre
dicting interindividual variability in exposure. Some of the factors 
contributing to HBM interindividual variability are discussed below. 

4.2.1. Extrapolating general HBM data to different populations 
HBM values can be extrapolated to predict internal doses for specific 

populations, e.g., male vs female (Deepika et al., 2022), adult vs. child 
(Deepika et al., 2022), and foetus (Balhara et al., 2022) with use of PBK 
models. The extrapolated internal doses could then be linked to the 
corresponding external exposures for the specific populations, which 
then could be compared to HBGVs. Two examples are provided where 
EFSA used PBK models. In 2020, EFSA (2020) established a new TWI for 
the sum of four common PFAS in adults. This TWI was based on two 
human studies that showed an inverse association between serum levels 
of the four PFAS and vaccine antibody formation in 1-year-old, pre
dominantly breastfed, and 5-year-old children. PFAS levels in mothers’ 
milk not leading to serum levels in infants that may decrease their 
vaccination response were modelled. Using a similar approach, in 2012, 
EFSA derived a TWI based on a PBK model relating mercury concen
tration in mothers’ hair (biomarker) and neurobehavioral impairment in 
children (EFSA Panel on Contaminants in the Food Chain, 2012). 

4.2.2. Relative importance of different routes of exposure 
HBM data for a chemical are the result of aggregate exposure to that 

chemical from all possible source and routes of exposure. TK data and 
PBK modelling could provide important information on the contribution 
of the different routes of exposure to HBM concentrations. For example, 
a PBK model derived using controlled human exposure studies for xylene 
was used to investigate the contribution of dermal absorption of xylene 
vapor when volunteers were exposed to the OEL but wearing an air-fed 
half-mask (Loizou et al., 1999). The model demonstrated that dermal 
absorption of vapors accounted for about 1.8 % of the total body burden. 
Although this contribution may appear modest, it should not be over
looked in situations where exposures to high airborne concentrations are 
mitigated by only using respiratory protection. 

4.2.3. Facilitating the interpretation of mixture exposure 
HBM data can also provide insight into co-exposure patterns result

ing from exposure to multiple chemicals from various routes and sources 
and over time. Therefore, such data are particularly valuable for 
assessing potential risks from combined exposure to multiple chemicals. 
The role of PBK modelling in assessing mixture toxicology has been 
growing and widely used to investigate and address combined effects 
and potential interactions to human health from the simultaneous 
exposure to multiple chemicals. Desalegn and colleagues (Desalegn 
et al., 2019) reviewed state-of-the-art PBK models for chemical mixtures 
and to evaluate the applications of PBK modelling for mixtures with 
emphasis on their role in chemical risk assessment. Binary mixtures and 
volatile organic compounds accounted for two-thirds of the chemical 
mixtures identified. They reported that the most common modelled 
exposure route and species were inhalation and rats, respectively. 
Competitive inhibition was the most common type of interaction among 
the various types of mixtures, and usually becomes a concern at con
centrations higher than environmental exposure levels. This leads to 
reduced biotransformation, that either means a decrease in the amount 
of toxic metabolite formation or an increase in toxic parent chemical 
accumulation. The consequence is either lower or higher toxicity 
compared to that estimated for the mixture based on the dose addition 
model. PBK modelling, therefore, can play a central role in predicting 
interactions in chemical mixture risk assessment (Desalegn et al., 2019). 
Recently, a mixture risk assessment was carried out based on the HBM 
analyses of 29 chemicals known to disrupt male reproductive health in 
98 young Danish men (Kortenkamp et al., 2022). Risk quotients were 
calculated for each chemical included in the mixture risk assessment as 

the ratio between daily intakes and reference doses. Daily intakes were 
estimated for each study participant based on internal exposure data. 
Personalized hazard indices (i.e., the sum of the risk quotients for all 
studied chemicals for each participant) showed substantial exceedances 
of acceptable mixture exposures, with BPA and DEHP identified as 
drivers of mixture risks. Thus, HBM, with the analyses of the personal
ized hazard index, can open new doors to mixture risk assessment. 

4.3. Risk characterisation 

The ratios between the HBM data (typically 95th percentiles of 
measured levels) and the HBM-GV can be used to calculate risk char
acterization ratios (RCR). An RCR lower than 1 indicates that the risk 
associated with the exposure to the studied chemical is not expected to 
raise any specific health concerns. In a recent study, Meslin et al. (Meslin 
et al., 2022) developed an HBM-GV for bisphenol S (BPS) following the 
systematic methodology proposed within the HBM4EU project (Apel 
et al., 2020). They characterized the risk associated with exposure to 
BPS based on HBM data available for Europe calculating RCR. The re
sults showed that RCRs exceeded 1 for BPS in the sampled populations. 

4.4. Limitations 

Integrating PBK modeling and HBM in risk assessment has several 
limitations, some of which have already been addressed here. These 
limitations include assumption of steady state conditions when calcu
lating HBM-HVs. This assumption might not hold true for all chemicals, 
especially for those with shorter half-lives due to their rapid elimination, 
limited accumulation, and frequent fluctuations in body concentrations 
leading to underestimation of their actual exposure levels. The challenge 
of non-persistent chemicals with short half-lives is also the difficulty to 
measure internal exposure in human populations. Future work is needed 
to develop improved sampling strategies and biomarkers for non- 
persistent chemicals. 

Another limitation is the translation of concentrations from acces
sible matrices like plasma or urine to specific target tissues. Current 
advancements in PBK modelling have improved our ability to estimate 
tissue concentrations. However, PBK models still necessitate research 
and validation to improve their accuracy in estimating target tissue 
levels. While PBK models can predict the time course of a chemical in the 
body and estimate internal exposure levels, more work is needed to 
enhance their reliability. 

Additionally, there are uncertainties in reconstructing external 
exposure levels from biomarkers of exposure. This point that becomes 
particularly evident in the case of pesticides, where the same biomarker 
of exposure might originate from different parent compounds, compli
cating the accurate estimation of external exposure levels and the total 
margins of exposure for the associated parent compounds. This uncer
tainty is exacerbated by the HBM strategy of relying on single spot urine 
samples, which may not provide a reliable reconstruction of external 
exposure levels. 

Lastly, there is a need for harmonized methods for deriving HBM- 
GVs across different regulatory silos. Efforts have been made to 
develop standardized protocols for deriving HBM-GV, but these need to 
be adopted and recognized by appropriate regulatory bodies. 

5. Recommendations for the integration of HBM and 
toxicokinetics in human risk assessment 

We provide seven major recommendations for the integration of 
HBM and TK in human risk assessment and explain below how these can 
be achieved. 
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5.1. Advancing HBM is important for the development of HBM-GVs and 
for direct assessment and interpretation of HBM data 

Health-based HBM-GVs would strengthen decision-making for public 
and occupational risk assessments. Currently, there is no acknowledged 
harmonized method for deriving HBM-GVs across the different regula
tory silos. Substantial efforts have been made by the HBM4EU initiative 
to develop standardized protocols for deriving HBM-GVs (Apel et al., 
2020). However, these need to be adopted and recognized by appro
priate regulatory and responsible bodies. The PARC project is working in 
this direction with the involvement of regulatory agencies (Marx- 
Stoelting et al., 2023). Additionally, the OECD (2022) has contributed to 
these efforts by publishing a guidance document for occupational bio
monitoring and setting occupational biomonitoring limit values. 

5.2. Combining HBM data with epidemiological and human toxicological 
data 

This could better estimate the quantity of chemicals absorbed into 
the body, increasing the possibility of identifying an internal exposur
e–response relationship (Apel et al., 2020; Schütze et al., 2015), which 
can help guide public policies on chemical management (Choi et al., 
2015). Regarding the design of HBM/epidemiological studies, it has 
been suggested that one of the most urgent needs is the setting up of a 
new generation of studies with improved and repeated biosample 
collection, improved questionnaire data, and the deployment of 
advanced exposure assessment methodologies, including HRMS-based 
methods as a first step to inform targeted methods (Vineis et al., 
2020). While advocating for increased sample collection frequency for 
non-persistent chemicals (e.g., several times a day for urine and once a 
week for blood) over a long period of time (months or up to one year) 
may be ambitious, optimizing biosampling protocols to balance feasi
bility and relevance is crucial. Focused efforts to strategically schedule 
biosample collection considering chemicals’ kinetics and half-life, while 
prioritizing key exposure periods or critical windows, could offer valu
able insights into the toxicokinetics of chemicals and time-sensitive 
variations in chemical exposure without imposing unrealistic burdens 
on study participants. 

5.3. Developing guidance and standardization for chemical analytical 
methods in HBM 

These should describe biomarker selection and sampling methods 
based on human TK data as well as quality assurance (QA) and quality 
control (QC) for analytical chemical methods (Louro et al., 2019). An 
important outcome of HBM4EU was developing a QA/QC program for 
selected substances (López et al., 2021). Successful commercial QA 
programs that cover more chemicals than HBM4EU are available; 
however, they need to include all laboratories willing to participate in 
the QA/QC program as well as be further expanded to include other 
substances. Furthermore, to identify a greater number of biomarkers and 
more suitable ones, a suspect screening and full scan analysis should be 
performed instead of compound-specific methods. This effort will 
require a coordinated approach between experts in targeted and HRMS- 
based non-targeted/suspect screening approaches (Fig. 2). The use of 
innovative analytical methods based on high-resolution mass spec
trometry (HRMS) should be encouraged as discovery-based approach 
because they provide comprehensive chemical fingerprints. With such 
an approach, targeted methods can be updated with the best metabolites 
to provide the most comprehensive view of the exposure, and the most 
appropriate biomarkers for the corresponding matrix. The current lim
itations of these HRMS-based methods are that accurate identification of 
new metabolites can be extremely time consuming and requires a lot of 
expertise, and that the synthesis of standards for individual chemicals 
and their metabolites are needed for accurate measurements. High
lighting ENTACT efforts in US (Ulrich et al., 2019) or similar initiatives 
serves as a testament to the collaborative efforts toward advancing 
analytical methodologies in HBM. Leveraging such collaborative ini
tiatives can aid in addressing challenges, enhancing knowledge sharing, 
and fostering standardized practices, crucial for the successful imple
mentation of HRMS-based methods in HBM research. HBM researchers 
sometimes need the assistance of manufacturers, perhaps ‘encouraged’ 
by regulators, to facilitate access to standard materials at ‘reasonable’ 
cost because metabolites are often not available and chemical synthesis 
of metabolites is generally prohibitive for an individual study. 

5.4. Generating reliable TK data is key for PBK model parameterization, 
and for HBM optimization. Several recommendations can be made to this 
purpose 

5.4.1 More efforts in validating new and existing in vitro models are 

Fig. 2. Scheme of coordinated approach between toxicokinetics, high-resolution mass spectrometry, and MSMS experts to improve exposure assessment.  
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needed to generate ADME parameters and to reduce the variability of 
the parameter values which generate uncertainties in PBK model pre
dictions (Louisse et al., 2020). The OECD has developed a guidance 
document (GD) on good in vitro method practices (OECD 2018a), and 
GDs and test guidelines (TG) to measure skin absorption (OECD 2004a; 
b) and hepatic intrinsic clearance using primary hepatocytes or S9 from 
rainbow trout (OECD 2018b; c; d). The OECD is currently developing a 
TG on the determination of CYP450 enzyme activity induction using 
differentiated human hepatic cells.27 In addition to the officially 
accepted test methods, other in vitro and in silico methods for measuring 
ADME processes are available. A list of methods available to generate TK 
parameters with priorities set for the development of TGs has been 
proposed by Punt et al. (Punt et al., 2020). 

5.4.2 Existing and new ADME databases should be publicly available 
(Bessems et al., 2014). These databases should contain at least the main 
parameters needed to parameterize simple PBK models (the perme
ability coefficient (Papp, cm/h) for passive crossing barriers (gut, skin, 
lung); distribution coefficients between air, blood, and tissues; protein 
binding in plasma; metabolic parameters such as Michaelis-Menten 
constant (Km, mmol/mL) and maximal rate (Vmax, mmol/h), or the 
intrinsic hepatic clearance (CLint, mL/h) for non-saturated metabolism; 
lung clearance, renal clearance). 

5.4.3More regulatory initiatives should exist for generating TK data. 
Although regulatory initiatives are now advancing the move towards 
collecting TK data, its application to regulatory science has been limited. 
Except for pharmaceuticals and to a degree for plant protection products 
(Terry et al., 2016), toxicokinetic studies are generally not in the regu
latory toxicological test requirements (e.g., REACH, CLP) (Louro et al., 
2019). However, an OECD test guidelines on in vivo TK testing (OECD 
TG417) (OECD 2010) provides information on mass balance, absorp
tion, bioavailability, tissue distribution, metabolism, excretion, and 
basic toxicokinetic parameters (OECD TG417 (OECD 2010)). The 
revised harmonized template (OECD Template, OHT 5828) highlights a 
number of important uses of TK data. While TK data are currently not 
present in standard data requirements for chemical risk assessment 
under EU REACH Regulation, the legislation states that the kinetic 
profile should be considered as part of the human health hazard 
assessment. The accompanying technical guidance outlines the potential 
role TK information can play in supporting intelligent testing strategies. 
This is a clear deficiency in regulatory schemes considering that TK 
studies could provide important information also for the identification 
of the target organ, for setting the appropriate experimental protocol in 
repeated exposure studies, and for reducing uncertainties in extrapola
tion from animal data to humans and facilitating animal-free toxicology. 
If TK is included in regulations, this could pave the way for a transition 
to more refined and accurate next generation chemical risk assessment. 
A pertinent example underscoring the importance of this recommen
dation is the most recent evaluation of glyphosate. Previously, risk 
assessment estimates based on urinary glyphosate concentrations were 
extrapolated to a daily intake value assuming a urinary excretion of 20 
% of oral glyphosate excreted as unchanged glyphosate in urine (EFSA, 
2015), with earlier estimates of 30 % (EC 2002). More recent human 
metabolism data has reported this rate as low as approximately 1 % 
(Faniband, 2020; Zoller et al., 2020). This was flagged in a recent study 

as having a significant impact on risk assessment approaches, as the oral 
glyphosate dose would be 20 times higher than previously assumed 
based on the same urinary glyphosate data, and demonstrated the 
diminished margin of safety for glyphosate exposures (Connolly et al., 
2020). It was also highlighted that the urinary excretion rate would need 
to be embedded in future health-based reference values for glyphosate 
and in the development of future human biomonitoring guidance values 
(Connolly and Koch, 2023). The most recent EFSA evaluation of 
glyphosate took this into account, considering both oral absorption rates 
(i.e. 1 % and 20 %) and flagged the need to further consider ADME in 
regulatory risk assessment (European Food Safety Authority et al., 
2023). 

5.4.4 Validated PBK models should be used in a read-across approach 
for data-poor chemicals to predict TK data (Ellison, 2018; Ellison and 
Wu, 2020; Laroche et al., 2018; Paini et al., 2021; Thompson et al., 
2021). The OECD PBK model guidance document (OECD, 2021) tries to 
provide guidance to address evaluation of PBK models for data poor 
chemicals for which no in vivo data are available for validation (Paini 
et al., 2021). Also, ECHA is now increasing the use of the read-across 
assessment framework (RAAF) because of the need to group sub
stances for more effective regulatory action, reduce the need for safety 
testing, and prevent regrettable substitutions (ECHA, 2017). For many 
cases, TK data are considered valuable supporting evidence for read- 
across justification. 

5.5. Advancing the use of PBK modelling in risk assessment 

5.5.1 Increasing accessibility and user-friendliness by making exist
ing PBK models publicly available with easy access to open source codes 
(e.g., the Open System Pharmacology suite (OSPS) publishes on Github 
all the developed code (Rostami-Hodjegan and Bois 2021)). The ISES 
Europe has recently published a PBK modelling inventory (Schlüter 
et al., 2022). Creation of a user-friendly open-source web based PBK 
model where risk assessors only need to impute a few parameters and 
the model would return predicted values could facilitate its use by risk 
assessors. Some examples are PK-Sim, IndusChemFate, and the EFSA TK- 
Plate (Quignot et al., 2018). The use of the FAIR (findable, accessible, 
interoperable, reusable) principles of scientific data sharing for in silico 
predictive models has been recently proposed (Cronin et al., 2023). 

5.5.2 PBK models should be validated before risk assessors apply the 
models. The OECD has published a guidance document on the charac
terization, validation and reporting of PBK models for regulatory pur
poses (OECD, 2021). 

5.5.3 Some criteria or qualifiers for PBK models should be commu
nicated to guide risk assessors to choose the preferred model for a 
certain purpose. Examples are model applicability (scope), validation 
and uncertainty of parameters and predictions could be key for its uti
lization by risk assessors (Frechen and Rostami-Hodjegan, 2022). 

5.5.4 PBK models should be used for aggregate exposure when 
dealing with risk assessment of a chemical coming from different sources 
and different exposure routes. 

5.6. Linking the aggregate exposure pathway (AEP) and the adverse 
outcome pathway (AOP) frameworks using PBK models 

This will improve the confidence in chemical and mixture risk 
assessment. Establishing relationships between exposure to a single 
chemical and a resulting adverse health outcome is the common practice 
in risk assessment nowadays. However, evaluation of risks for human 
health from the simultaneous exposure to multiple chemicals and dis
ease outcomes is increasing, as reported in these overview documents 
(Beronius et al., 2020; Bopp et al. (2015)). As a result, there is a need to 
better understand the complex mechanisms that influence the journey of 
chemicals, from their initial environment release to the final biological 
effect they produce, which are all relevant for risk assessment. Just as 
the AOP framework has emerged as a means of providing insight into 

27 https://www.oecd.org/chemicalsafety/testing/Draft_TG_CYP_induction_ 
for_2nd_WNT_review.pdf.  
28 https://www.bing.com/ck/a?!&&p=dcd892e6bf356963JmltdHM9MTY4M 

Tc3NjAwMCZpZ3VpZD0wNTlkZjM3Ni1jM2E3LTZlYTQtMDFjMC1lMTl 
mYzI1NjZmNzImaW5zaWQ9NTE3Nw&ptn=3&hsh=3&fclid=059df376-c3a 
7-6ea4-01c0-e19fc2566f72&psq=OHT+58%2c+Endpoint+Study+Record%2c 
+Basic+Toxicokinetics&u=a1aHR0cHM6Ly93d3cub2VjZC5vcmcvZWhzL3Rl 
bXBsYXRlcy9PSFQlMjA1OCUyMC0lMjBFTkRQT0l 
OVF9TVFVEWV9SRUNPUkQuQmFzaWNUb3hpY29raW5ldGljc 
192OS4xJTIwLU5vdiUyMDIwMjEuZG9jeA&ntb=1. 
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mechanism-based toxicity (Warner et al., 2022), the exposure science 
community has seen the recent introduction of the AEP framework (Tan 
et al., 2018; Teeguarden et al., 2016). An example was recently pub
lished for phthalates (Clewell et al., 2020) where an adaptable workflow 
for integrating exposure and toxicity data by coupling AEP and AOP 
frameworks and using in vitro and in silico methodologies for cumulative 
risk assessment is elucidated. 

5.7. Integrating exposure biomarkers related to biologically effective dose 
into ADME studies and PBK modelling 

Biomarkers of toxicologically effective dose may be considered as a 
very early stage of biomarkers of effect and flag that an exposure to a 
given chemical has reached a level sufficient to trigger a toxicologically 
relevant outcome through the interaction with molecular targets 
(Schmidt, 2006). Although they are not substance specific, they are 
triggered by chemicals and might be very useful in assessing overall 
exposures to chemical mixtures with additive effects. Four examples of 
effective dose biomarkers are: (1) changes in blood/serum enzyme ac
tivities (plasma and erythrocyte cholinesterases for organophosphate 
and carbamate pesticides)(Herrera-Moreno et al., 2021); (2) proteins 
induced downstream to receptor activation (eg., CYP1A1 for substances 
activating the aryl hydrocarbon receptor, including dioxins and PAHs) 
(Ho et al., 2022; Ibrahim et al., 2020); (3) metabolites and especially 
metabolite ratios (e.g., the sphinganine:sphingosine ratio as biomarker 
for the mycotoxin fumonisin) (Wangia et al., 2019); and (4) DNA ad
ducts for carcinogenic substances and mixtures (Lu et al., 2021). These 
biomarkers are relevant to, or even coincide with, the molecular initi
ating events or subcellular key events of AOPs (e.g., for mycotoxins (Van 
Den Brand et al., 2022)), hence they flag health-relevant events. 

6. Conclusion 

A consistent and structured input on the main determinants that 
explain inter-individual variability into PBK modelling will support an 
evidence-based use of HBM. The use of internal exposure-based GVs by 
regulatory authorities could allow initial screening of population 
exposure to chemicals to identify those chemicals requiring more 
detailed exposure and risk assessment, assisting in priority setting for 
new policy action and ultimately leading to improved product stew
ardship and risk management (Boogaard et al., 2011). The main limi
tations to this approach in risk assessment are the lack of HBM guidance 
values, which require more TK information to support the interpretation 
of HBM data, and the lack of legal enforcement. In conclusion, the use of 
TK modelling in combination with HBM in risk assessment has high 
potential both in regard to single chemicals and mixtures. 
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David, A., Chaker, J., Léger, T., Al-Salhi, R., Dalgaard, M.D., Styrishave, B., Bury, D., 
Koch, H.M., Jégou, B., Kristensen, D.M., 2021. Acetaminophen metabolism revisited 
using non-targeted analyses: Implications for human biomonitoring. Environ. Int. 
149, 106388. 

de Jong, E., van der Voet, H., Marx-Stoelting, P., Bennekou, S.H., Sprong, C., Bloch, D., 
Burchardt, A., Lasch, A., Opialla, T., Rotter, S., 2022. Roadmap for Action on Risk 
Assessment of Combined Exposure to Multiple Chemicals (RACEMiC). EFSA 
Supporting Publications 19, 7555E. 

Deepika, D., Sharma, R.P., Schuhmacher, M., Sakhi, A.K., Thomsen, C., Chatzi, L., 
Vafeiadi, M., Quentin, J., Slama, R., Grazuleviciene, R., 2022. Unravelling sex- 
specific BPA toxicokinetics in children using a pediatric PBPK model. Environ. Res. 
215, 114074. 

Desalegn, A., Bopp, S., Asturiol, D., Lamon, L., Worth, A., Paini, A., 2019. Role of 
physiologically based kinetic modelling in addressing environmental chemical 
mixtures–A review. Comput. Toxicol. 10, 158–168. 

Dopart, P.J., Friesen, M.C., 2017. New opportunities in exposure assessment of 
occupational epidemiology: use of measurements to aid exposure reconstruction in 
population-based studies. Current Environm. Health Rep. 4, 355–363. 

Dura, A., Louhimies, S., Deceuninck, P., Gribaldo, L., Holloway, M. and Berggren, E.,. 
EURL ECVAM Activities. SAGE PUBLICATIONS LTD 1 OLIVERS YARD, 55 CITY 
ROAD, LONDON EC1Y 1SP, ENGLAND; 2021. 

EC. Chemicals Strategy for Sustainability Towards a Toxic-Free Environment. in: 
Commission E., ed. COM(2020) 667 final. Brussels, 14.10.2020. 

ECHA. New Approach Methodologies in Regulatory Science Proceedings of a scientific 
workshop Helsinki, 19–20 April 2016. 2016. 

ECHA. European Chemicals Agency Read-Across Assessment Framework (RAAF) : 
considerations on multi-constituent substances and UVCBs ed^eds: European 
Chemicals Agency; 2017. 

EFSA Panel on Contaminants in the Food Chain. Scientific opinion on lead in food. EFSA 
Journal 2010;8:1570. 

EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on the risk for public 
health related to the presence of mercury and methylmercury in food. Efsa Journal 
2012;10:2985. 

EFSA Panel on Food Contact Materials, E.; Aids, P.; Lambré, C.; Barat Baviera, J.M.; 
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Göen, T., Hardy, E., Iavicoli, I., 2022. HBM4EU chromates study-Overall results and 
recommendations for the biomonitoring of occupational exposure to hexavalent 
chromium. Environ. Res. 204, 111984. 

Santonen, T., Mahiout, S., Alvito, P., Apel, P., Bessems, J., Bil, W., Borges, T., Bose- 
O’Reilly, S., Buekers, J., Portilla, A.I.C., 2023. How to use human biomonitoring in 
chemical risk assessment: Methodological aspects, recommendations, and lessons 
learned from HBM4EU. Int. J. Hyg. Environ. Health 249, 114139. 

Scher, D.P., Alexander, B.H., Adgate, J.L., Eberly, L.E., Mandel, J.S., Acquavella, J.F., 
Bartels, M.J., Brzak, K.A., 2007. Agreement of pesticide biomarkers between 
morning void and 24-h urine samples from farmers and their children. J. Eposure 
Sci. Environ. Epidemiol. 17, 350–357. 

Schettgen, T., Dewes, P., Kraus, T., 2016. A method for the simultaneous quantification 
of eight metabolites of synthetic pyrethroids in urine of the general population using 
gas chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 408, 
5467–5478. 

Schlüter, U., Meyer, J., Ahrens, A., Borghi, F., Clerc, F., Delmaar, C., Di Guardo, A., 
Dudzina, T., Fantke, P., Fransman, W., 2022. Exposure modelling in Europe: how to 
pave the road for the future as part of the European Exposure Science Strategy 
2020–2030. J. Eposure Sci. Environ. Epidemiol. 32, 499–512. 

Schmidt, C.W., 2006. Signs of the times: biomarkers in perspective. Nat. Inst. Environm. 
Health Sci. 

Schütze, A., Pälmke, C., Angerer, J., Weiss, T., Brüning, T., Koch, H.M., 2012. 
Quantification of biomarkers of environmental exposure to di (isononyl) 
cyclohexane-1, 2-dicarboxylate (DINCH) in urine via HPLC–MS/MS. J. Chromatogr. 
B 895, 123–130. 

Schütze, A., Gries, W., Kolossa-Gehring, M., Apel, P., Schröter-Kermani, C., Fiddicke, U., 
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