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Abstract 25 

In an increasingly chemically polluted environment, rapidly characterizing the human chemical 26 
exposome (i.e. chemical mixtures accumulating in humans) at the population scale is critical to 27 
understand its impact on health. High-resolution mass spectrometry (HRMS) profiling of complex 28 
biological matrices can theoretically provide a comprehensive picture of chemical exposures. However, 29 
annotating the detected chemical features, particularly low-abundant ones, remains a significant 30 
obstacle to implementing such approaches at a large scale. We present Scannotation 31 
(https://github.com/scannotation/Scannotation_software), an automated and user-friendly suspect 32 
screening tool for the rapid pre-annotation of HRMS preprocessed datasets. This software tool 33 
combines several MS1 chemical predictors, i.e., m/z, experimental and predicted retention times, 34 
isotopic patterns and neutral loss patterns, to score the proximity between features and suspects, thus 35 
efficiently prioritizing tentative annotations to verify. Scannotation and MS-DIAL4 were used to 36 
annotate blood serum samples of 75 Breton adolescents. Scannotation’s combination of MS1-based 37 
chemical predictors allowed annotating 89 chemically diverse environmental compounds with high 38 
confidence (confirmed by MS2 when available). These compounds included 62% of emerging and 39 
unknown molecules, for which no toxicological and/or human biomonitoring data is reported in the 40 
literature. The complementarity observed with MS-DIAL4 results demonstrates the relevance of 41 
Scannotation for the efficient pre-annotation of large-scale exposomics datasets.   42 
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Introduction 60 

Chemical pollution is a great and growing global problem, with more than tens of thousands of very 61 

diverse chemicals currently present on the market1. Human chemical exposure and toxicological data 62 

are only available for a few hundreds of these chemicals, meaning that a great share of chemicals 63 

potentially associated with deleterious health outcomes have not been investigated so far1. 64 

Nevertheless, the emergence of the exposome paradigm2 as well as technological advances such as 65 

hyphenated high-resolution mass spectrometry techniques (e.g., LC-HRMS) have paved the way for 66 

the use of suspect screening (SS) and non-targeted screening (NTS) approaches, and therefore offer 67 

great promises for a comprehensive characterization of exogenous substances mixtures accumulating 68 

in humans3–7. It is however crucial to overcome the remaining methodological obstacles before 69 

implementing large-scale non-targeted exposomics studies to population-based studies. Indeed, the 70 

annotation of the tens of thousands of signals present in HRMS datasets remains one of the main 71 

bottlenecks, as only a few percent of signals are usually annotated4. 72 

Annotation of complex HRMS data can be performed using NTS, which relies on the structure 73 

elucidation of features, prioritized as differential between two (or more) groups, or SS, which relies on 74 

the annotation of features prioritized for their similarity to compounds listed in a suspect library. This 75 

second methodology is particularly promising, in part because it has a strong potential for automation 76 

and allows for a very rapid prioritization of signals of interest. Furthermore, there is no restriction 77 

regarding the number of suspects that can be included, as well as the forms they are searched as (i.e., 78 

parent or metabolite, adduct). The comparison of experimental features and suspects on characteristic 79 

properties such as their mass/charge ratio or their MS2 fragmentation profile can be automatically 80 

performed, before being manually validated. Even though some bioinformatics solutions already exist 81 

to carry out MS2-based spectral library searches, allowing the automatized comparison of reference 82 

and experimental MS2 spectra (e.g., xMSannotator, msPurity, MZmine2, MS-DIAL, patRoon, 83 
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CAMERA)8–13, the number of software tools is still limited and not necessarily suited for exposomics 84 

applications14, which present specific challenges detailed hereafter.  85 

One of the main challenges of using biological matrices to characterize the human internal chemical 86 

exposome is the wide dynamic range of concentrations for compounds present in the samples. 87 

Compounds of interest in an exposomics context are often present at much lower levels (i.e., tens of 88 

pg/mL15) than many endogenous metabolites (i.e., up to a few mg/mL). These low-abundant 89 

xenobiotics do not systematically trigger MS2 acquisition16. This strongly limits the annotation’s 90 

confidence level according to Schymanski’s scale, which is the current reference17. Despite this fact, 91 

other factors accessible through MS1 data, such as retention time (Rt), distinctive isotope profiles 92 

based on halogen contents (often present in exogenous compounds such as pesticides), or detection 93 

of other phase I/II metabolites could already provide reliable indications on the annotation’s 94 

plausibility. Moreover, while reference data, such as Rt from a standard or exhaustive knowledge of 95 

metabolism pathway, may not be available for each suspect compound, various models exist to 96 

provide predicted values for Rt18–20 and structures for plausible metabolites21. Hence, these relevant 97 

MS1-based chemical predictors (experimental or predicted) can be combined into a substantial body 98 

of evidence pointing towards specific chemical identities for features of interest in exposomics 99 

applications. However, manually comparing these predictors between tens of thousands of suspects 100 

and features is a highly time-consuming task, so there is a need to develop tools that could speed up 101 

this process. 102 

In this context, we developed the Scannotation software. It automatically scores the comparison 103 

between suspect compounds and features obtained from any pre-processing software10,11,22 on three 104 

MS1-based chemical predictors: mass/charge ratio, isotopic ratios, and experimental or predicted 105 

retention time. It also generates common phase II metabolites and computes theoretical isotopic 106 

profiles for parent compounds and metabolites. Scannotation calculates and displays proximity scores 107 

between features and suspects called “confidence indices” for these three chemical predictors, as well 108 
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as an overall confidence index that effectively evaluates each automatized pre-annotation’s reliability. 109 

This software allows the efficient prioritization of pre-annotations, which can then be validated 110 

manually. This prioritization saves considerable time, as it allows a fast prioritization of features to be 111 

further investigated to gain a higher confidence, decreases the amount of false positive annotations, 112 

thus contributing to the wider and faster pre-annotation of HRMS datasets. The list of suspects can 113 

easily be adjusted to the study since Scannotation can rapidly generate new predictors.  114 

The efficiency of Scannotation was demonstrated in 75 serum samples from Breton adolescents 115 

(Pélagie cohort)23. These annotations were compared to those of MS-DIAL11, which performs MS2-116 

based annotations and was previously demonstrated to adequately and efficiently annotate low-117 

abundant compounds in serum samples16. The use of these two tools allowed the annotation of 89 118 

compounds from the internal chemical exposome of Breton adolescents, and demonstrated that the 119 

use of MS1 predictors was relevant and complementary to an MS2-based approach in an exposomic 120 

application.  121 

Experimental section 122 

1. Biological samples 123 

Serum samples (n=75) were obtained from 12-year-old male children from the PELAGIE cohort. This 124 

population-based mother-child cohort included 3,421 women from Brittany (France) enrolled during 125 

early pregnancy (before 19 weeks of gestation) between 2002 and 200623.  126 

2. Sample preparation 127 

Samples were prepared using a dual sample preparation method, previously optimized to widen the 128 

visible chemical space5. Briefly, protein precipitation (PPT) was performed on all 75 samples using a 129 

4:1 (v:v) ratio of cold methanol to matrix. After centrifugation, half of the supernatants was 130 

resuspended in 40 µL of injection phase (i.e., 90:10 (v:v) ultrapure water to acetonitrile ratio), while 131 

the second half was further cleaned up using a Phree (Phenomenex) protein and phospholipid removal 132 
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plate. Extracts were then evaporated to dryness under vacuum, and recovered in 40 µL of injection 133 

phase.  134 

3. Data acquisition  135 

Samples were analyzed using an AB SCIEX X500R QTOF-MS (Resolution > 30,000) interfaced with an 136 

AB SCIEX ExionLC AD UHPLC system. An Acquity UPLC HSS T3 C18 column (1.8 μm, 1.0 × 150 mm, 137 

Waters Corporation) maintained at 40°C was used to perform reverse phase chromatographic 138 

separation as described in Chaker et al. (2021)16. Samples were analyzed in full scan experiments in 139 

electrospray ionization (ESI) (–) and (+) modes. MS2 fragmentation data for chemical elucidation was 140 

obtained by analysis of selected samples in data-dependent acquisition experiments. Additional 141 

information regarding the chromatographic separation and ESI source parameters are available in the 142 

Supporting Information. 143 

4. MS1 data pre-processing  144 

Raw data acquired in full scan mode were pre-processed using vendor software MarkerView v.1.3 (AB 145 

SCIEX) and MSDIAL4 with parametrization previously optimized to detect low-abundant chemicals in 146 

blood serum samples16. Briefly, critical parameters values were set as: noise threshold of 10, mass 147 

tolerance of 10 ppm, retention time (Rt) tolerance of 1 min, average peak width of 12s, no isotope 148 

filtering. Feature areas in solvent blanks were systematically subtracted from corresponding feature 149 

areas in all samples.  150 

5. Suspect screening 151 

5.1. MS1-based suspect screening: Scannotation 152 

Scannotation is a two-part Python program aimed at providing a prioritized list of scored pre-153 

annotations available at https://github.com/scannotation/Scannotation_software. It was developed 154 

on Windows and tested on both Windows and on a Mac computer in a Windows virtual machine. 155 

Scannotation can process peak lists in .csv generated by any pre-processing software. The score is 156 

established by comparing the proximity between experimental features and suspects based on three 157 

https://github.com/scannotation/Scannotation_software
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MS1-based chemical predictors (i.e., m/z, Rt, and isotopic pattern). Its operating principle is described 158 

in Figure 1. 159 

 160 

 161 

Fig. 1 - Scannotation annotation workflow relies on comparing a user-built library to a list of features. 162 

Compounds’ identifiers (name and SMILES), molecular formula, experimental, predicted retention time 163 

(Rt) and logP values (when not listed by the user), allowing the software to compute molecular ion and 164 

adduct masses, theoretical isotopic pattern, and a logP-predicted Rt. Any other predicted Rt can also 165 

be added to the library and will be used by the software. The software then successively compares 166 

experimental features to the suspect library data for three predictors: m/z, Rt and isotopic fit. Scores 167 

are generated for each predictor, and combined into a global score. 168 

The first module of this SS tool (the library) generates theoretical predictor data for a list of suspects, 169 

based on user-provided data, as illustrated in Fig. 1 by the “Internal calculators” arrows in the “Library” 170 
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box. More precisely, molecular formulas (i.e. atomic contents) and atomic masses (from MIDAs 171 

https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html) are used to compute m/z values 172 

for molecular ions and various common adducts in both ESI (–) and (+) modes (i.e., [M-H]-, [M-H2O-H]-173 

, [M+Cl]-, [M+FA-H]- for negatively charged ions, and ([M+H]+, [M+NH4]+, [M+Na]+, [M+K]+ for positively 174 

charged ones). Moreover, these m/z values can be computed for common metabolites (i.e., 175 

glucuronide [+176.0321 m/z], sulfate [+79.9568 m/z], mercapturate [+145.0198 m/z] and cysteine 176 

conjugates [+103.0092 m/z]) of the library compounds by adding the corresponding expected mass 177 

increments24. The sulfate conjugate [+SO3] is added if O is present in the molecular formula and the 178 

glucuronide [+C6H8O6] conjugate is added if either N or O are present in the molecular formula. 179 

Molecular formulas are also used to generate theoretical isotopologues’ m/z and relative abundance 180 

values by internally implementing the previously described MIDAs polynomial algorithm25. Users can 181 

provide experimental Rt values (if available), as well as predicted values from existing algorithms18,19. 182 

Moreover, octanol-water partition coefficient (logP) values provided by the user may be used to 183 

predict a logP-based Rt, under the condition that a sufficient number of compounds (i.e., over 20) have 184 

both an experimental Rt and a logP value. More details on this model are available in the SI. For library 185 

compounds without logP information, as well as for Scannotation-predicted metabolites, logP values 186 

are predicted through atomic composition-based model. This multiple linear regression model, 187 

adapted from Mannhold et al. (2009)26, was built on close to 1,800 compounds with available 188 

experimental logP values ranging from -5.08 to 9.29 (list available in SI Table A1). This model was 189 

trained by randomly choosing 80 % of the dataset, then validated on the remaining 20%. The process 190 

was repeated 1,000 times. Median coefficients were used to determine the contribution of each atom. 191 

Model training determined that the most sensitive parameters to predict logP from atomic 192 

composition were the numbers of atoms of carbon, halogens, and sulfur (logP increasing with number 193 

increase), as well as nitrogen and oxygen (logP decreasing with number increase). This slightly more 194 

complex model (i.e., the original model only considers the number of carbons and the number of 195 

heteroatoms) performed better than the original model, with a root mean square error (RMSE) of 1.32 196 
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compared to 2.04. Similarly, the Bayesian Information Criteria (BIC) value was lower (i.e., better 197 

adjustment) for the more complex model, with a value of 766 compared to 4553 for the original model. 198 

Details on this model are available in SI Table A1. 199 

A human blood library, including 6 000 compounds, was constructed using data from the literature27 200 

and online databases such as the Blood Exposome Database28, Human Metabolome Database29, 201 

Exposome Explorer30, FoodBall31, and the NORMAN Network Suspect List Exchange32. This library is 202 

mainly comprised of food intake biomarkers, pesticides (and their metabolites), industrial pollutants, 203 

cosmetic ingredients, and pharmaceuticals/drugs (and their metabolites). Scannotation’s library 204 

module was used to add potential metabolites, predict logP-based Rt, and compute theoretical m/z 205 

values and isotopic patterns. Custom-made libraries can also be used. 206 

Scannotation’s second module performs the matching between the library and the peaklist. It 207 

computes confidence indices (CI), which score the proximity between suspects and features for each 208 

of the three predictors between 0 (no match) and 1 (perfect match). These scores are built as functions 209 

of the absolute difference between theoretical and experimental values of each predictor (i.e., m/z, 210 

Rt, mass difference between isotopologues and area ratio between isotopologues), and of a tolerance 211 

associated with each of these parameters16. These tolerances, called Δ, are either determined based 212 

on instrumental uncertainty (i.e., for m/z and m/z differences) or analytical variability (i.e., for Rt and 213 

area ratios). Additionally, for m/z and Rt, values of associated Δ (i.e., Δm/z and ΔRt) vary depending on 214 

the chemical descriptor value. Indeed, higher m/z deviations (in ppm) are expected for lower m/z 215 

values. Δm/z is set to 15 ppm for masses strictly lower than 200 Da, and 10 ppm for masses over 200 216 

Da. Moreover, Scannotation allows the use of experimental Rt as well as Rt predicted through various 217 

tools, which all present different accuracies. Rt is also expected to vary in a non-linear manner 218 

throughout the chromatogram. Therefore, the used ΔRt value depends on both the type of Rt (i.e., 219 

experimental, predicted through RTI, predicted through Retip, or predicted through logP) and the 220 

value of the tentative annotation’s theoretical Rt. In particular, ΔRt values for experimental Rt can be 221 
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computed by Scannotation from a user-provided file which includes repeated (at least four) Rt 222 

measurements for any list of compounds (e.g., internal standards). All Δ values used for this work are 223 

available in SI Table A2. 224 

CI values for each predictor are combined into an overall score, named the global CI (CIg), as a mean 225 

of CI values to efficiently rank the pre-annotations generated by Scannotation. Moreover, the CI of 226 

annotated compounds, for which metabolites and/or neutral losses are detected, are associated to a 227 

letter from a to d (details available in SI Table A3). This leads to a better ranking in the result table and 228 

highlights the additional confidence in the tentative identification. The calculation of CI values and 229 

their adequation for suspect screening were previously described by Chaker et al. (2021)16. 230 

5.2. Scannotation was used to perform suspect screening on the feature tables obtained 231 

from the aforementioned MS1 data pre-processing step (see paragraph 4.MS1 data 232 

pre-processing”). Manual curation on MS1 and MS2 data (when available) was 233 

performed to confirm pre-annotations. This process included verification of absence 234 

or significantly lower presence in the blank (i.e., area ratio sample/blank > 10), signal-235 

to-noise ratio > 10, visual examination of peak shape, and verification of accuracy of 236 

m/z, Rt, and isotopic pattern. When available, experimental MS2 spectra was 237 

compared to MS2 spectra in databases (e.g. HMDB, MassBank29,33) or in-silico 238 

predictions (e.g., CFM-ID, MetFrag34,35). When a standard was available, experimental 239 

parameters of features were compared to those of the standard. This manual curation 240 

was performed on all compounds presenting a CIg value calculated with three 241 

predictors, as well as all compounds presenting a CIg value over 70% if only two 242 

predictors were available. MS2-based suspect screening: MS-DIAL 243 

In addition to Scannotation’s screening, an MS2-based suspect screening approach was performed by 244 

processing raw data obtained from MS2 data dependent acquisitions with MS-DIAL (v.4.70)11. Critical 245 

parameters values were set as: minimum peak height of 10, mass tolerances of 0.0025 Da (10 ppm for 246 

a m/z of 250) in MS1 and MS2, Rt tolerance of 1 min, minimum peak width of 5 scans, and 247 
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consideration for Cl and Br elements enabled (for isotope recognition). Spectral MSP databases “All 248 

Public” available online (experimental spectra for 12,879 compounds in ESI (–) mode and 13,303 249 

compounds in ESI (+) mode) were used for suspect screening. Manual curation (i.e., manual 250 

verifications of peak shape, m/z, Rt, isotopic pattern and MS2 spectra if available) on MS1 and MS2 251 

data was performed to confirm annotations suggested by the software. 252 

6. Quality assurance and quality control procedures 253 

Several quality assurance and quality control procedures were implemented, including the systematic 254 

use of instrumental and extraction blanks, composite quality control samples, and ISTD. Details are 255 

available in SI.  256 

Results and discussion 257 

1. Comparison of MS1 and MS2-based suspect screening workflows 258 

In total, 75 serum samples from a mother-child cohort were prepared with two different sample 259 

preparations5 and injected on a UHPLC-ESI-QTOF. Quality control criteria were  met (results presented 260 

in Supporting information table A6). Two suspect screening approaches were then implemented and 261 

compared to annotate the HRMS pre-treated datasets (i.e., approximately 50,000 and 93,000 features 262 

for ESI (−) and (+) modes respectively). Both software tools provided comparable numbers of raw pre-263 

annotations. In total, Scannotation provided close to 33,000 pre-annotations while MS-DIAL provided 264 

close to 36,000. However, establishing a cut-off score of 70% for both tools (i.e., selecting pre-265 

annotations with Scannotation CIg > 0.7 and MS-DIAL identification score > 70%) allowed reducing the 266 

number of tentative annotations by 78% using Scannotation while it only resulted in an 8% reduction 267 

for MS-DIAL. Reaching a similar level of prioritization for MS-DIAL can only be achieved by choosing 268 

perfect matches (i.e., scores of 100%). The discrepancy in scores is inherent to the algorithms used by 269 

both tools. Firstly, MS-DIAL incorporates a score based on MS2 spectral similarity, and Scannotation is 270 

currently only MS1-based. Secondly, MS-DIAL’s Rt and m/z score calculations are significantly less 271 
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restrictive than Scannotation’s, as an error of half the tolerance margin will provide an MS-DIAL score 272 

of 88%11 and a Scannotation CI of 50%. This is because MS-DIAL considers the distribution of errors 273 

(presumed gaussian) whereas Scannotation’s CI formula is linear to represent the gap between 274 

theoretical and experimental values as directly and accurately as possible. Thirdly, MS-DIAL’s isotopic 275 

fit score is based on five ratios between six isotopologues, instead of one ratio between two 276 

isotopologues for Scannotation, which is arguably less stringent. These last two points clarify why 277 

Scannotation’s CI values decrease more rapidly compared to MS-DIALs’, thus explaining a more 278 

pronounced discriminating effect of scoring. As there are often limited resources (particularly time) 279 

that can be dedicated to manual curation, an efficient prioritization tool is essential to focus on 280 

plausible tentative annotations first. For this work, manual verifications were conducted on 8000 pre-281 

annotations from Scannotation and 3000 pre-annotations from MS-DIAL, which approximately 282 

required 35h and 15h of work, respectively (i.e., comparable rates).    283 

After manual curation (as detailed in the Experimental section, paragraphs 5.1. and 5.2.), 89 prioritized 284 

annotations were proposed with a confidence level ranging from 1 to 4 according to Schymanski’s 285 

scale17, with an overlap of 60 compounds for both software tools, as shown in Figure 2. The detailed 286 

prioritization process is available in SI Table A4 and the list of annotated compounds is available in SI 287 

Table A5. More specifically, of the 89 annotated compounds, 13 were attributed a confidence level of 288 

1 (15%), 60 were attributed a level 2a (67%), 6 were attributed a level 2b (7%), and 10 were attributed 289 

a level 4 (11%) according to Schymanski’s scale17. Despite the heterogeneity in the levels of confidence 290 

reported here (i.e., between 1 and 4 on a scale of 1 to 5), these 89 annotations are supported by 291 

multiple orthogonal elements of proof.  For instance, the level 4 does not accurately reflect the 292 

confidence that can be put in these annotations since they were suggested based on a combination of 293 

several MS1 predictors, including a match with Rt from a standard (when available), identification of 294 

neutral loss, or the presence of additional metabolite from the same parent compound. This is the case 295 

for the herbicide bromoxynil, which could not be fragmented in the samples during MS2 acquisitions, 296 

but for which the match between the experimental Rt of the annotated ion and of the standard’s was 297 
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scored at 88% by Scannotation (CIg = 0.84), or for the triclosan glucuronide and sulfate as discussed 298 

below. It should be noted that features for these 89 compounds were correctly peak picked by both 299 

data processing software tools (i.e. checked after manual observations); observed differences in 300 

compound lists can therefore be attributed to the annotation process. 301 

 302 

Fig. 2 - Overview of the data generated by two suspect screening tools, based on either MS1 or both 303 

MS1 and MS2 predictors (Scannotation and MS-DIAL respectively). 304 

Scannotation was able to annotate 90% of these 89 compounds, including 22% that were exclusively 305 

identified through this software. Among the compounds only annotated by Scannotation, five (e.g., 306 

triclosan sulfate and glucuronide or 2-chlorophenol) were either too low abundant or not fragmented, 307 

and did not present reliable MS2 spectra. Since MS-DIAL mainly relies on matching MS2 spectra, these 308 

compounds could therefore be missed and/or not prioritized by this solution. Even without MS2 data, 309 

Scannotation was able to provide solid annotation for triclosan sulfate (CIg = 0.93) and glucuronide 310 

(CIg = 0.92) based on Rt match with pure standards, specific isotopic profiles match (3 atoms of Cl), 311 
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identification of neutral loss (i.e., triclosan glucuronide and sulfate conjugates) and the presence of 2 312 

phase II conjugates from the same parent with a coherent elution order. These elements of proof are 313 

presented in SI Fig.S1. Moreover, for the 15 remaining compounds not annotated by MS-DIAL, there 314 

was no adequate reference spectra in the library. No adequate reference spectra may either mean no 315 

spectra at all, as for 5-acetylsalicylamide, or spectra acquired in the other ionization mode, or with 316 

different MS2 acquisition modes and/or collision energies, leading to very poor spectra matching (and 317 

thus elimination from the pool of suggested annotations), as for paraxanthine. 318 

MS-DIAL annotated 77% of the 89 compounds, including 10% of them solely identified through this 319 

software. This was explained by the absence of these compounds in Scannotation’s initial library. 320 

Subsequent addition of these 9 compounds to the library (i.e., molecular formula, identifiers, predicted 321 

Rt and logP values when available) allowed their annotation by MS1-based predictors, resulting in a 322 

mean CIg of 0.86 (all above 0.79). Many other highly scored putative annotations were suggested by 323 

MS-DIAL; however, they were mainly endogenous compounds. This was expected since a large 324 

proportion of the available MS2 spectra in MS-DIAL’s databases are of endogenous compounds that 325 

were out of the scope of this work.  326 

The Schymanski’s scale is an undeniably useful tool to efficiently communicate confidence of 327 

annotations in a harmonized and easy-to-read way. However, in the context of exposomics 328 

applications with low-abundant compounds (particularly in complex matrices such as biological 329 

matrices), using MS2 predictors may face various critical obstacles. For instance, it is fairly frequent 330 

that there is either no MS2 data acquisition (i.e., acquisition not triggered due to low abundance) or 331 

no reliable MS2 spectra (i.e., acquisition triggered, but collision energy too low or compound too 332 

diluted to produce useful fragmentation data) for ions of interest. This lack of reliable MS2 data leads 333 

to the attribution of low confidence levels to compounds that may be relevant in a public health 334 

context due to their high toxicity and/or large prevalence in the population. When these issues arise, 335 

the use of other predictors based on MS1 could be relevant to differentiate between level 4 336 
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compounds ranging from bare formula matches to annotations supported by other elements such as 337 

coherent Rt and presence of related biotransformation products, and therefore to efficiently prioritize 338 

the massive number of suggested annotations for manual curation. This can also be helpful to create 339 

inclusion lists of ions of interest for possible further MS2 acquisitions. 340 

 341 

In the end, we demonstrate that Scannotation is complementary to existing MS2-based suspect 342 

screening since both Scannotation and MS-DIAL were able to annotate a large number of exogenous 343 

chemicals in these 75 serum samples with a large majority (67%) being detected by both. We also 344 

demonstrate the importance of having a relevant library dedicated to HRMS-based exposomics 345 

studies. 346 

2. Description of chemical exposure profiles in the Pélagie cohort 347 

2.1. Environmental chemical exposures in the cohort 348 

The data collected on the 75 samples injected in both ESI (-) and ESI (+) modes allowed annotating 89 349 

compounds from the internal chemical exposome. In these chemicals, several “everyday pollutants” 350 

commonly found in human biological samples (at varying detection frequencies and levels) were 351 

annotated, such as phthalates, paraben derivatives, pesticides, and per- and poly-fluorinated alkyl 352 

substances36,37. Interestingly, bromoxynil, a well-characterized herbicide and established endocrine 353 

disruptor38 found in 64% of samples, had previously been reported in the urine of 22% of pregnant 354 

women from the same cohort (i.e., during the prenatal period of these 75 teenagers)39. This suggests 355 

that some individuals have been chronically exposed (or at repeated occasions) to this compound, 356 

including during this specific period of vulnerability. Moreover, lidocaine (local anesthetic) was 357 

surprisingly found in more than 90% of samples. After further investigation, it was determined that 358 

anesthetic patches containing lidocaine were used 1hour prior to the blood draw, thus confirming the 359 

relevance of the presented workflow to detect environmental exposures.  360 
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These annotations of commonly detected chemicals also demonstrate the sensitivity and the relevance 361 

of this HRMS-based profiling method and SS strategy to identify chemicals usually detected at trace 362 

levels using conventional targeted MS2 method. Levels of insecticide metabolite fipronil sulfone 363 

(detected in 35% of samples) were previously reported in human blood from the general population 364 

at concentrations varying between 0.1 and 4 ng/mL40. Similarly, bromoxynil levels in plasma samples 365 

from teenagers residing in rural areas were previously reported from trace levels to 140 ng/mL41. 366 

Likewise, previously reported levels of perfluorooctanesulfonic acid (PFOS) and 367 

perfluorohexanesulfonic acid (PFHxS) (detection frequencies of 100% and 95% respectively) in the 368 

German general population from 2009 to 2019 ranged from 0.9-9.9 ng/mL and from 0-4.6 ng/mL 369 

respectively42. As the MS1-based suspect screening approach allowed the annotation of all of these 370 

compounds, it appears that exogenous chemicals present at low levels in complex matrices may still 371 

be identified with a suspect screening strategy using Scannotation. 372 

To provide a global overview of the exposure profiles, the 89 detected compounds were classified in 373 

four general categories: gut microbiota metabolites (including those from exogenous dietary 374 

substrates), food compounds (natural and artificial), medication and personal care compounds (e.g., 375 

pain management, surfactants), and industrial compounds (e.g., synthesis intermediates used in the 376 

manufacturing of dyes, pesticides or plasticizers). Most of the 89 annotated compounds have multiple 377 

sources, such as ferulic acid, which is both a natural compound and a food preservative, or 378 

di(ethylhexyl)phthalate, which is a plasticizer present in many plastic products including flooring and 379 

upholstering, everyday household items, and food packaging. However, for illustrating purposes, 380 

primary uses (according to production volume) were considered for the proposed classifications. Gut 381 

microbiota, food compounds, medication and personal care compounds, and industrial compounds 382 

represented, respectively, 7%, 46%, 16%, and 31% of the overall number of identified compounds. 383 

Taken together, food compounds and medical and personal care products represented close to two-384 

thirds (62%) of annotated compounds. The first category includes natural compounds (e.g. caffeine, 385 

piperine), flavoring agents (e.g. sweeteners aspartame and sucralose), and food contact chemicals (e.g. 386 
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1,3,5-tris(2,2-dimethylpropionylamino)benzene), while the second includes medication and 387 

metabolites (e.g. acetaminophen phase II metabolites), additives from personal care products (e.g. 388 

shampoo and shower gel surfactant cocamidopropyl betaine), and preservatives (e.g. isobutyl- and 389 

isopropylparaben). Detecting many compounds from these categories was expected, as their 390 

concentrations in blood can be up to 106 times higher than some industrial pollutants (such as 391 

pesticides or plasticizers)15, thus leading to easier detection and characterization (in particular, easier 392 

acquisition of MS2 spectra).  393 

2.2. Inter-individual chemical exposure variability 394 

In order to study the inter-individual variability that could be observed in terms of chemical exposure 395 

profiles, the presence or absence of each annotated compound in analyzed samples was assessed. The 396 

number of annotated compounds from each category and sub-category is represented in Figure 3. 397 

398 

Fig. 3 - Detection of suspect compounds in each participant. Compounds were classified in four main 399 

categories: gut microbiota metabolites, food compounds, medication and personal care compounds, 400 

and industrial compounds. 401 

It should be noted that most compounds have multiple possible uses. The classification presented here 402 

is based on primary use according to PubChem43. Secondary uses for each compound are  also 403 

presented in the SI, table A4. 404 
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A median of 66 compounds were detected per sample. At the scale of the four main categories, food 405 

compounds are the most represented with a median of 52% (CV=4%) of annotated compounds per 406 

individual. The less represented category was gut microbiota-related chemicals, with a median of 9% 407 

of annotated compounds per individual (CV=8%). Industrial compounds represented a median of a 408 

quarter of all annotated compounds per individual, with a CV of 10%. 409 

At the scale of subcategories, natural food compounds regrouped the largest proportion of annotated 410 

compounds (median of 38% of annotated compounds per individual). On the other hand, the less 411 

represented chemical class is organophosphate flame retardants (e.g., tris(2-butoxyethyl)phosphate) 412 

(median of 0%, average of 1%). Exposure profiles (i.e., combining exposures to different compounds) 413 

may be indicative of an individual’s lifestyle. For example, 12 participants presented a co-exposure to 414 

acesulfame, aspartame and sucralose (all artificial sweeteners), which may indicate an overall more 415 

processed diet. It should however be noted that the high number of annotated compounds in 416 

comparison to the number of participants significantly limits the statistical power necessary to 417 

establish such profiles. It is also impossible to identify the source of these exposures with certainty, as 418 

this would require analyses of environmental samples (i.e., indoor air, items from diet, personal care 419 

products, etc.) and/or data obtained from questionnaires in addition to the data acquired from these 420 

biological samples.   421 

Our results also highlight the capacity of suspect screening approaches to discover new relevant 422 

biomarkers of exposure to known toxicants. Bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoic 423 

acid was detected in 97% of samples with areas 3 to 8 times higher than areas for bromoxynil (detected 424 

in 64% of samples). However, despite its apparent easier detection, this metabolite was not reported 425 

(as a biomarker of bromoxynil exposure or otherwise) in human biomonitoring studies in blood or 426 

urine before. These new biomarkers may subsequently be used either to retrospectively assess 427 

exposure if non-targeted data was acquired or may be included in new lists of targeted compounds of 428 

interest.  429 
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These exploratory approaches allow to significantly increase our knowledge of the chemical exposome, 430 

and particularly to investigate emerging and unknown compounds (without toxicological and/or 431 

human biomonitoring data available). Detection frequencies for all compounds were computed. 432 

Detailed results are available in SI Table A5. Overall, 66% of all annotated compounds were found in 433 

more than 80% of samples. Of these ubiquitous compounds, 17% (10 compounds) are not documented 434 

in the extensive NORMAN Network’s SUSDAT list, which combines close to 110,000 structures from 98 435 

suspect lists provided by the scientific community32. These compounds include 3 phase II metabolites 436 

(sulfated forms), highlighting the need to include biotransformation products (known or predicted) in 437 

suspect lists. Furthermore, 20% (11 compounds) of these ubiquitous compounds have no reported 438 

toxicological data according to the CompTox chemistry dashboard44  (Figure 4). For instance, a 439 

phthalate found in 92% of samples (i.e., Bis(2-(tert-butyl)-6-(3-(tert-butyl)-2-hydroxy-5-methylbenzyl)-440 

4-methylphenyl) terephthalate) and only annotated with Scannotation has no reported toxicological 441 

data, even though phthalates are known endocrine and metabolic disruptors45. This again 442 

demonstrates that MS1-based suspect screening approaches can be of great use to uncover previously 443 

unknown or poorly known exposures to chemicals of potential concern. These compounds, while 444 

largely predominant in number in reality (more than 110 million compounds registered on PubChem43 445 

compared to less than a thousand biomonitored chemical species in some of the biggest human 446 

biomonitoring initiatives46,47), are not investigated by targeted approaches. The use of exploratory 447 

approaches focused on low-abundant chemicals, in terms of data acquisition (i.e., non-targeted 448 

analyses), data processing (i.e., adequate peak picking parameters), and annotation (i.e., annotation 449 

even without MS2 acquisitions), may help starting to bridge this gap in knowledge by uncovering 450 

emerging and unknown compounds in the studied population (Figure 4). 451 

 452 

 453 
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 454 

Fig. 4 – Contribution of suspect screening approaches to the number of exogenous compounds detected 455 

in human serum samples from the Pélagie cohort. Proportion of compounds in reality are based on the 456 

total number of Pubchem entries (>110M), the number of CompTox chemistry dashboard entries (~1M), 457 

and the number of chemicals usually biomonitored by the largest human biomonitoring initiatives to 458 

date (<1000). 459 

Conclusion 460 

Here, we demonstrate the efficiency of Scannotation to investigate the internal chemical exposome of 461 

75 Breton adolescents using a MS1-based strategy to score the proximity between features obtained 462 

from any pre-processing software and suspects, and providing an easy-to-read indicator of each pre-463 

annotation’s reliability. This strategy was complementary to the one used by MS-DIAL based on MS2, 464 

and Scannotation provided thousands of scored pre-annotations that led to the annotation of 89 465 

environmental chemical compounds (confirmed with manual curation) with various uses including 466 

pesticides, medication, preservatives and synthesis intermediates. It has also uncovered the relevance 467 

of Scannotation’s SS strategy to identify low-abundant and/or less documented compounds (not 468 

annotated by MS-DIAL) or to detect new metabolites of known contaminants. We demonstrate that 469 

this approach will help bridging a gap in knowledge by documenting the prevalence of some emerging 470 

and unknown compounds in a given population. The chemical fingerprints acquired, and the list of 471 
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annotated compounds could be further used in association to contextual data from the cohort, to 472 

further describe the chemical exposome of the Breton teenage population, and to investigate 473 

determinants of these exposures. 474 
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