Determination of glyphosate and AMPA in indoor settled dust by hydrophilic interaction liquid chromatography with tandem mass spectrometry and implications for human exposure

Dominique Saurat^{1,2}, Gaëlle Raffy¹, Nathalie Bonvallot¹, Christine Monfort¹, Olivier Fardel¹, Philippe Glorennec¹, Cécile Chevrier¹, Barbara Le Bot¹

¹Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S 1085, F-35000 Rennes, France

²Ecole du Val-de-Grâce, Service de Santé des Armées, Paris, France

Supplementary material

SI Figure 1: MRM chromatogram of AMPA, glufosinate, glyphosate, and their internal standards in a 1.25 μ g/L calibration standard

SI Figure 2: MRM chromatogram of AMPA, glufosinate, glyphosate, and their internal standards in the standard reference material SRM 2585.

Compound name: AMPA 109.7 > 62.9 Correlation coefficient: r = 0.999792, r^2 = 0.999584 Calibration curve: 0.983933 * x + -0.0300116 Response type: Internal Std (Ref 4), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

SI Figure 3: Calibration curves for AMPA, glufosinate, and glyphosate

Compound	Chilled (ng/g)	Recovery (%)				
Compound	spiked (ng/g)	Dust C	SRM 2585	Dust D	Mean (%)	RSD (%)
	50	93%	88%	90%	91%	3%
AMPA- ¹³ C, ¹⁵ N	250	86%	79%	91%	85%	7%
	500	89%	82%	81%	84%	5%
Glufosinate-d ₃	50	93%	102%	117%	104%	12%
	250	100%	108%	92%	100%	8%
	500	98%	95%	90%	95%	4%
Glyphosate- ¹³ C ₂ , ¹⁵ N	50	87%	101%	85%	91%	10%
	250	75%	71%	107%	84%	24%
	500	93%	79%	87%	86%	8%

SI Table 1: Extraction yields of the internal standards AMPA-13C, 15N, glufosinate-d₃, and glyphosate-13C₂, 15N

SI Figure 4: Glyphosate and AMPA concentrations in Dust D for six series of three extractions

SI Table 2. Repeatability and	l reproducibility da	a for glyphosate
-------------------------------	----------------------	------------------

Series	Concentration (ng/g)		
	1	2	3
1	1763.00	1693.00	1838.00
2	2093.00	1711.00	1920.00
3	2225.00	1908.00	1984.00
4	2610.00	1936.00	2440.00
5	2440.00	2096.00	1984.00
6	2059.00	1804.00	1843.00

Number of series (I)	6
Number of measures (IJ)	18
Number of repetitions (J)	3
Sum of squares of residual deviations	534880.00
Sum of squares of total deviations	1167301.61
Sum of squares of inter-range differences	632421.61
Intermediate calculation of s ² B	27303.66
Repeatability variance (s ² r)	44573.33
Inter-series variance (s ² _B)	27303.66
Fidelity variance (s ² FI)	71877.00

Fidelity

Average activity recovered	2019.28
Standard deviation of repeatability (sr)	211.12
Inter-series standard deviation (sB)	165.24
Standard deviation of fidelity (sFI)	268.10

%RSD	
	10%
	8%
	13%

Calculations according to NF V03-110

SI Table 3.	Repeatability	and reproducibility	data for AMPA
-------------	---------------	---------------------	---------------

Series	Concentration (ng/g)		
	1	2	3
1	207.00	223.00	188.00
2	183.00	202.00	183.00
3	272.00	287.00	184.00
4	185.00	226.00	226.00
5	165.00	184.00	185.00
6	241.00	179.00	213.00

Number of series (I)	6
Number of measures (IJ)	18
Number of repetitions (J)	3
Sum of squares of residual deviations	10350.00
Sum of squares of total deviations	18904.28
Sum of squares of inter-range differences	8554.28
Intermediate calculation of s ² B	282.79
Repeatability variance (s ² r)	862.50
Inter-series variance (s ² _B)	282.79
Fidelity variance (s ² FI)	1145.29

Fidelity

Average activity recovered	207.39
Standard deviation of repeatability (sr)	29.37
Inter-series standard deviation (sB)	16.82
Standard deviation of fidelity (sFI)	33.84

%RSD	
	14%
	8%
	16%

Calculations according to NF V03-110

SI Table 4: Limits of quantification (LOQ	for glyphosate and AMPA according to	analytical technique and sample mass
---	--------------------------------------	--------------------------------------

Reference	Analytical technique	Sample mass	LOQ in ng/g for Glyphosate	Equivalent LOQ for 25 mg for glyphosate	LOQ in ng/g for AMPA	Equivalent LOQ for 25 mg for AMPA
(Mendez et al., 2017)	FMOC/C18	2g (soil)	1,19	95,2	1,6	128
(Islas et al., 2014)	NQS/C18	0,1 g (soil)	180	720	270	1080
(Bento et al., 2016)	FMOC/C18	2 g (soil)	50	4000	50	4000
(Sun et al., 2017)	FMOC/C18	10 g (soil)	40	16000	-	-
(Delhomme et al., 2021)	FMOC/C18	15 g (soil)	30	18000	25	15000
This Study	HILIC	25 mg (indoor dust)	25	25	25	25

FMOC/C18: 9–fluorenylmethoxycarbonyl chloride (FMOC) derivatization / reverse phase (C18) UHPLC/MS-MS; NQS/C18: 1,2-Naphtoquinine-4-sulfonate (NQS) derivatization / reverse phase (C18) HPLC / UV; HILIC: no derivatization / normal phase (HILIC) / UPLC/MS-MS

- Bento, C.P.M., Ritsema, C.J., Xue, S., Zomer, P., Gort, G., van Dam, R., Yang, X., Mol, H.G.J., Geissen, V., 2016. Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Sci. Total Environ. 572, 301–311. https://doi.org/10.1016/j.scitotenv.2016.07.215
- Delhomme, O., Rodrigues, A., Hernandez, A., Chimjarn, S., Bertrand, C., Bourdat-Deschamps, M., Fritsch, C., Pelosi, C., Nélieu,
 S., Millet, M., 2021. A method to assess glyphosate, glufosinate and aminomethylphosphonic acid in soil and earthworms. J. Chromatogr. A 1651, 462339. https://doi.org/https://doi.org/10.1016/j.chroma.2021.462339
- Islas, G., Rodriguez, J.A., Mendoza-Huizar, L.H., Pérez-Moreno, F., Carrillo, E.G., 2014. DETERMINATION OF GLYPHOSATE AND AMINOMETHYLPHOSPHONIC ACID IN SOILS BY HPLC WITH PRE-COLUMN DERIVATIZATION USING 1,2-NAPHTHOQUINONE-4-SULFONATE. J. Liq. Chromatogr. Relat. Technol. 37, 1298–1309. https://doi.org/10.1080/10826076.2013.789801
- Mendez, M.J., Aimar, S.B., Aparicio, V.C., Ramirez Haberkon, N.B., Buschiazzo, D.E., De Gerónimo, E., Costa, J.L., 2017. Glyphosate and Aminomethylphosphonic acid (AMPA) contents in the respirable dust emitted by an agricultural soil of the central semiarid region of Argentina. Aeolian Res. 29, 23–29. https://doi.org/https://doi.org/10.1016/j.aeolia.2017.09.004
- Mogusu, E.O., Wolbert, J.B., Kujawinski, D.M., Jochmann, M.A., Elsner, M., 2015. Dual element (15N/14N, 13C/12C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. Anal. Bioanal. Chem. 407, 5249–5260.
- Sun, L., Kong, D., Gu, W., Guo, X., Tao, W., Shan, Z., Wang, Y., Wang, N., 2017. Determination of glyphosate in soil/sludge by high performance liquid chromatography. J. Chromatogr. A 1502, 8–13. https://doi.org/10.1016/j.chroma.2017.04.018

pH scale

SI Figure 5: Illustration of the zwitterionic forms and of glyphosate and AMPA (Mogusu et al., 2015)