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Synopsis 29 

Background Carbapenemase-producing Enterobacteriaceae (CPE) cause resistant healthcare-associated 30 

infections that jeopardize healthcare systems and patient safety worldwide. The number of CPE episodes 31 

has been increasing in France since 2009 but the dynamics are still poorly understood.  32 

Objectives Use time-series modeling to describe the dynamics of CPE episodes from August 2010 to 33 

December 2016 and to forecast its evolution for the 2017-2020 period. 34 

Methods We used time-series to analyze CPE episodes from August 2010 to November 2016 reported to 35 

the French national surveillance system. The impact of seasonality was quantified using seasonal-to-36 

irregular ratios. Seven time-series models and three ensemble stacking models (average, convex and linear 37 

stacking) were assessed and compared to forecast CPE episodes during 2017-2020.  38 

Results During 2010-2016, 3559 CPE episodes were observed in France. Compared to the average yearly 39 

trend, we observed a 30% increase in the number of CPE episodes in Autumn. We noticed a 1-month 40 

lagged seasonality of non-imported episodes compared to imported episodes. Average stacking gave the 41 

best forecasts and predicted an increase during 2017-2020 with a peak up to 345 CPE episodes (95% 42 

PI[124-1158], 80% PI[171-742]) in September 2020. 43 

Conclusions The observed seasonality of CPE episodes sheds light on potential factors associated with 44 

the increased frequency of episodes which need further investigations. Our model predicts that the number 45 

of CPE episodes will continue to rise in the coming years in France, mainly due to local dissemination, 46 

associated with bacterial carriage of patients in the community which is becoming an immediate challenge 47 

to help controlling the outbreak.  48 

 49 
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Introduction 55 

The increasing incidence of healthcare-associated infections caused by carbapenemase-producing 56 

Enterobacteriaceae (CPE) jeopardizes healthcare systems and patient safety in Europe,1 the US, and many 57 

countries worldwide.2 Because carbapenems remain the main antibiotic for the treatment of multi-resistant 58 

bacteria infections, CPE infections are associated with longer hospital stays and an excess risk of death.3,4 59 

The primary risk factors of CPE’s spread involve consumption of broad-spectrum antibiotics (carbapenems, 60 

third and fourth generation cephalosporins and fluoroquinolones), cross-infection during hospital stays, and 61 

cross-border transfers of patients in healthcare settings.5 In parallel, plasmidic gene transfers between 62 

bacteria contribute to the rising number of non-internationally imported cases.6  63 

Despite reinforced national guidelines and strategies regarding the management and prevention of 64 

emerging CPE,5,7 the number of episodes in France has risen steadily since 2009.8,9 This phenomenon 65 

seems to be associated with inter-regional dissemination and importation of international cases as shown 66 

in several recent studies.1,10–13 Moreover, in France CPE has advanced from its epidemiological stage 3 67 

(regional spread) in 2013 to stage 4 (inter-regional spread) in the 2014-2015 period.1,14 Despite a growing 68 

concern regarding this issue, the majority of studies conducted so far have been limited to the 69 

epidemiological description at the national level8,9,13 and the reporting of specific local outbreaks,10–12,15,16 70 

with especially few information on the seasonality of episodes. Common methods used to understand and 71 

predict the dynamics of infectious diseases involve both compartmental and agent-based models.17 These 72 

methods, however, either require a deep knowledge of the transmission pathways used by the pathogens, 73 

or rely on assumptions that are difficult to validate. Time-series analysis, on the other hand, appears to be 74 

easier to apply and has garnered much interest in the field, especially in modeling influenza dynamics18–20 75 

or antimicrobial resistance.21 These methods rely on the identification of temporal patterns, with few 76 

assumptions modeling the mechanism of how CPE is spread. Time-series analysis can therefore be 77 

effectively used to describe and quantify the trend and seasonality of CPE episodes incidence, as currently 78 

little is known on the matter. In addition to providing deeper insights into the phenomenon, this approach 79 

also allows relatively simple forecasts of the number of cases, which could help public health authorities to 80 

better define and evaluate infection control guidelines. 81 



 
 

Time-series analysis was thus used to firstly describe and quantify the dynamics (trend and seasonality) of 82 

CPE episodes from August 2010 to December 2016. The second objective was to identify a methodological 83 

process using time-series modeling to forecast the evolution of CPE episodes for the 2017-2020 period. 84 

 85 

 86 

Materials and methods 87 

Data sources 88 

Surveillance data of CPE episodes notified between August 2010 and December 2018 were extracted from 89 

the French national Healthcare-Associated Infections Early Warning and Response System (HAI-EWRS).22 90 

An episode was defined as a single case or a cluster of cases carrying the same strain of CPE, and known 91 

to have been in contact with one another.13 A case was defined as a positive CPE diagnosis from sample 92 

collected for infection or through systematic screening performed according to standard national 93 

recommendations.7 Available characteristics on each episode were the occurrence date, the index case 94 

status (infected or carrier), and the importation status, i.e. the presence of a direct link with a foreign country 95 

for the potential index case (hereafter denominated as imported or in the case of no link, non-imported). 96 

Information on the mechanism of CPE resistance confirmed by the national reference center, and the 97 

involved bacteria species were also collected. CPE episodes were grouped according to month of 98 

occurrence and analyzed together and separately according to their importation status.  99 

Since the HAI-EWRS collection system changed in January 2017 (international importation status of the 100 

index case not collected in the same way, missing data on the infection status of the index case), we decided 101 

not to include the period 2017-2018 in the main analysis but to use it as a control set for the prediction model 102 

(Figure 1B). In addition, during the descriptive phase of this work, the number of episodes in December 103 

2016 appeared to be an outlier compared to previous months, possibly due to an “end-of-year” reporting 104 

issue before the new collection system. The main study period was thus set from August 2010 to November 105 

2016. To build and validate the different models, data was split into two datasets: the training set from 106 

August 2010 to December 2014 and the test set from January 2015 to November 2016 (Figure 1A).  107 

 108 

Figure 1 here 109 
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 111 

Statistical analysis 112 

We considered three main time-series in this study: the first was composed of imported episodes, the 113 

second one of non-imported episodes and the third of all episodes, whatever their importation status. All 114 

considered time-series were multiplicative, a log transformation was thus used in each model built. To 115 

quantify the seasonality of episodes in the three time-series on the whole study period (August 2010-116 

November 2016), we used seasonal-to-irregular (SI) ratios.23 SI ratios were computed based on the de-117 

trended time-series obtained using the X-11 seasonal adjustment method and corresponded to the product 118 

of the seasonal and the irregular parts of the multiplicative time series. Time-series were de-trended using 119 

moving average24 and trends estimates using time-series linear model.23 As X-11 seasonal adjustment 120 

method required non-zero values; one fictional episode was added each month over the study period for 121 

the non-imported time-series. 122 

To forecast the evolution of the number of CPE episodes, we considered 10 methods issued from time-123 

series modeling and ensemble methods. We built seven time-series models, hereafter called component 124 

models. These included: a seasonal autoregressive integrated moving average (SARIMA) model,25 a time-125 

series linear model (tslm),23 a X-11 seasonal adjustment method,24 an exponential smoothing state space 126 

(ETS) model,26,27 a multiplicative Holt-Winters method with multiplicative errors,26,27 a neural network 127 

autoregression (NNAR),23 and a TBATS model (exponential smoothing state space model with Box-Cox 128 

transformation, ARMA (autoregressive-moving-average) errors, trend and seasonal components).28 All 129 

these components models were fitted independently on the training set (August 2010-December 2014) and 130 

then used to forecast the number of CPE episodes over the test period (January 2015-November 2016). In 131 

addition, we implemented three ensemble stacking methods, which combined the fitted and forecasted 132 

values of the seven component models. First, an average stacking model was defined considering all 133 

combinations of component models. The retained combination was the one with the best predictive quality 134 

on the training set according to the mean absolute error (MAE) quality parameter.29 Next, we used a convex 135 

stacking model composed of the best linear combination of the seven component models with non-negative 136 

coefficients summing to one.29 Finally, we built a linear stacking model which estimated the best coefficients 137 



 
 

of the linear combination of all component models.30 Both the convex and the linear stacking model were 138 

computed using the square loss as a performance criterion.29 For each component model, 80% and 95% 139 

prediction intervals (PIs) were estimated based on the standard deviation of each step forecast.23 For 140 

stacking methods, as no consensus exists to our knowledge, we carried out a linear combination of the PIs 141 

by using the stacking coefficients. 142 

To select the best model to be used for forecasting, we assessed the quality of each of the 10 models 143 

compared to the observed data of training and test sets using MAE, mean absolute percentage error 144 

(MAPE), and root mean squared error (RMSE).23 Forecasts being on the same scale, minimization of MAE 145 

was selected as the main selection criterion as suggested by Hyndman.23 The model with the best 146 

forecasting quality on the test set was then trained on all available data (2010-November 2016) and used 147 

to predict CPE episodes from December 2016 to December 2020.  148 

Analyses were performed using R (3.5.2)31 and the packages forecast,32 opera,29 and seasonal.24 149 

 150 

 151 

Results 152 

Characteristics of CPE episodes 153 

A total of 3559 CPE episodes – 1473 (41.4%) over the training period and 2086 (58.6%) over the test period 154 

– were reported in France between August 2010 and November 2016 (46 episodes occurring in December 155 

2016 were excluded from the analyses). Out of these, 1624 (45.6%) episodes were internationally-imported 156 

cases and 1935 (54.4%) had no documented link with a foreign country (non-imported episodes). Among 157 

the 769 episodes with an infected index case, 280 (36.4%) were imported, whereas 1,350 (49.0%) were 158 

imported among the 2753 episodes with a carrier index case (p<0.05) (83 episodes had a missing index 159 

case status). The majority of CPE episodes had an OXA-48 (class D beta-lactamases with oxacillinase 160 

enzyme activity) mechanism of resistance with a total of 2684 (75.4%) episodes. NDM (New Delhi metallo-161 

beta-lactamase) resistance corresponded to 541 (15.2%) episodes, KPC (Klebsiella pneumoniae 162 

Carbapenemase) to 168 (4.7%), and VIM (Verona integron-encoded metallo-beta-lactamase) to 145 (4.1%) 163 

episodes. The remaining 21 episodes (0.6%) had no reported resistance mechanism. Klebsiella 164 



 
 

pneumoniae and Escherichia coli were the two main bacteria species involved in the episodes (1915 165 

episodes (53.8%) and 1335 episodes (37.5%), respectively). 166 

 167 

Quantifying the seasonal effect 168 

The SI ratios chart was obtained using the X-11 seasonal adjustment method, enabling to quantify the 169 

impact of seasonality on the number of CPE episodes during the 2010-2016 period (Figure 2). Across the 170 

years, the number of episodes reported was higher in Autumn and lower at the beginning of each year. The 171 

seasonal increase of the number of CPE episodes was 30% and 29% higher in September and October 172 

respectively, as compared to the average trend. In contrast, a 20% decrease in the number of CPE episodes 173 

was observed in February compared to the other months. 174 

Results of the analysis by importation status using X-11 seasonal adjustment method are presented in 175 

Figure 3. The number of non-imported episodes appeared to grow faster than the imported ones. Indeed, 176 

we found trends equal to 0.59 and 0.88 for the imported and non-imported episodes, respectively, using the 177 

time-series linear model over the whole study period. When only considering data starting from 2012 (no 178 

fictional episode added in the non-imported time series), these trends were even higher and respectively 179 

equal to 0.67 and 1.01. A decrease in the trend for non-imported episodes was observed at the end of the 180 

period mainly due to the low number of episodes reported in November 2016. SI charts highlighted a 1-181 

month lagged seasonal impact of the non-imported compared to imported episodes. Indeed, the number of 182 

imported CPE episodes increased by around 33% in August and September, while the peak was observed 183 

in October for non-imported episodes with an average rise of 33% compared to other months. We also 184 

looked at the seasonality of the two main episodes strains split according to their importation status 185 

(Supplementary figure 1). K. pneumoniae seemed to drive the seasonality of imported episodes with a 69% 186 

increase of the number of episodes in September. On the opposite, E. coli drove the non-imported episodes 187 

with a 75% increase of the number of episodes related to this strain in October. 188 

 189 

Figure 2 here 190 

 191 

Figure 3 here 192 



 
 

 193 

Prediction of episodes evolution 194 

Accuracy parameters over the training and test sets of the seven component models and the three stacking 195 

methods are presented in Table 1. Aside from the stacking techniques, TBATS appeared to be the best 196 

method to model the training set (MAE=3.35), but was less accurate than X-11 seasonal adjustment on the 197 

test set (MAE=13.08 versus 12.86 respectively). All three stacking techniques provided better fitted values 198 

on the training set, as compared to the component models. Linear stacking had the best adjustment on the 199 

training set (MAE=2.65). On the test period, average stacking method based on three component models 200 

(X-11 seasonal adjustment, multiplicative Holt-Winters method, and TBATS) produced the most accurate 201 

forecasts (MAE=12.65), performing better than X-11 seasonal adjustment alone. 202 

 203 

Table 1 here 204 

 205 

Based on its performance on the test set, we used the average stacking method to forecast the number of 206 

CPE episodes during 2017-2020. This method was trained on all episodes occurring over the August 2010-207 

November 2016 period, and retained only two component models: X-11 seasonal adjustment method and 208 

ETS. The obtained forecasts and PI are presented in Figure 4. The number of CPE episodes was predicted 209 

to increase over the next 4 years in France with a peak up to 345 episodes in September 2020 (95% PI 210 

[124-1158], 80% PI [171-742]). In addition, the model predicted 177 episodes (95% PI [96-316], 80% PI 211 

[118-257]), 225 episodes (95% PI [106-480], 80% PI [136-365]), and 278 episodes (95% PI [1153-733], 212 

80% PI [153-514]) in September 2017, September 2018, and September 2019, respectively. The accuracy 213 

parameters (RMSE, MAE, and MAPE) comparing the predictions over the 2017-2018 period and the 214 

observed values were equal to 25.38, 18.95 and 14.32, respectively. Moreover, the real values observed 215 

during control period (2017-2018) were included in the 80% prediction interval (Figure 4). 216 

 217 

Figure 4 here 218 

 219 

 220 



 
 

Discussion 221 

This study is the first, to our knowledge, that investigates the dynamics of the spreading of CPE in France, 222 

and deploys time-series analysis for this purpose. Using the exhaustive database of notified cases from the 223 

beginning of the epidemic, we showed an ongoing increasing trend of CPE episodes and difference of 224 

seasonality according to case importation status. Despite wide prediction intervals, the number of CPE 225 

episodes is forecasted to continue to grow for the next 4 years.  226 

OXA-48 was the dominant strain of carbapenemase in France, followed by NDM; which differs to what is 227 

observed in the US and other European countries.1,33 Although France has one of the highest antibiotic 228 

consumption rates in Europe, the consumption of carbapenems is lower than average and has not 229 

significantly increased during the 2012-2016 period; therefore, antibiotic consumption may not explain the 230 

rise in the number of notified episodes we observed.34 While the national public health agency (‘Santé 231 

publique France’) provides a general report on the national epidemiological situation,8,9 our analyses 232 

enhances the results provided thus far by quantifying the seasonality in the number of episodes. Indeed, 233 

we revealed a 30% increase in the number of CPE episodes in Autumn, i.e. September and October, 234 

compared to other months. Moreover, when stratifying the dataset according to the origin of the episodes, 235 

two separate peaks were observed: a 33%-increase peak in August and September for the internationally-236 

imported episodes and a 33%-increase peak in October for the non-imported ones. The peak of imported 237 

cases may be due to summer holidays occurring in July and August in France, and thus a consequence of 238 

hospitalizations and repatriations from foreign countries. We cannot, however, rule out the possibility that 239 

intra-national variations in patient flows linked to summer holidays tend to increase the population at-risk of 240 

infection or CPE carriage. The one-month delay in non-imported cases, causing a peak in October, could 241 

be linked to secondary cases occurring in healthcare facilities or communities. These hypotheses, however, 242 

require individual patient studies in order to be confirmed. It also appeared that there was a difference in 243 

seasonality between bacteria strains. This could be a consequence of the endemic status of K. pneumoniae 244 

in foreign European countries compared to E. coli,35 but this hypothesis may need deeper analyses. In 245 

addition, it is more than probable according to national guidelines7 that patients having experienced 246 

hospitalizations in a CPE-endemic foreign country will be more likely to be screened for CPE carriage and 247 

reported; a selection bias that could also explain a delay between imported and non-imported cases. Since 248 



 
 

2014, the trend of non-imported episodes appeared to grow at a faster rate than that of imported cases. 249 

This could be explained by either an increase in community spreading of CPE, or the impossibility of 250 

reconstructing chains of episodes between healthcare facilities, which may be due to the inter-regional 251 

spread.1,14 252 

Using average stacking methodology, our results suggest that the overall number of CPE episodes in 253 

France will continue to rise over 2017-2020 with peaks in September each year. This result is consistent 254 

with the epidemiological transition of France regarding CPE from stage 3 to 4 in 2014-2015 according to 255 

ECDC.1,14 Despite the wide prediction intervals of the forecasts, the prediction model seems to be robust. 256 

Indeed, we showed that there was a high seasonality in the data and an ongoing trend that may not 257 

disappear without implementation of specific control measures or an external event.  258 

Regarding statistical analysis, our study relies on a robust methodology aiming at finding the most effective 259 

method for prediction. Firstly, seven component models, which are the most frequently used in time-series 260 

analysis, were built. Then, three stacking models were implemented based on these component models. 261 

These ten methods were compared, to retain the one method that produced predictions, which best fitted 262 

the observed data of the test set. The wide variety of models deployed allowed us to consider different 263 

underlying generation process of time-series, such as the moving average with SARIMA or the exponential 264 

smoothing with ETS or Holt Winter’s method. In addition, the use of ensemble techniques improved the 265 

quality of predictions, as suggested in the literature,36 supported by the model’s better performance on the 266 

quality of parameters, when compared to the single component models. The use of such ensemble 267 

methods, however, may suffer from an overfitting bias.37 To limit this bias, we chose to split the entire dataset 268 

into training and test sets, and to select the best model according to the quality parameters on the test set 269 

only. The effective performance of our final model in predicting the final control set (period 2017-2018) 270 

indicates that such overfitting is limited. In addition, as shown in the results section, stacking methods rely 271 

on component models, which themselves rely on data. Different data may thus lead to a different 272 

combination of models retained by the stacking method. Therefore, we looked for a replicable 273 

methodological process rather than a model to be replicated in other similar studies. 274 

Our study also relies on robust surveillance data. Indeed, due to mandatory reporting of CPE infection and 275 

colonization through various healthcare centers and surveillance networks we believe our data accurately 276 



 
 

reflects the situation of CPE episodes in France over the study period. In addition, the study period stretched 277 

over 76 months, leading to training and test sets 53-month and 23-month long, respectively. Because of the 278 

seasonality of the data, these lengths were considered long enough to obtain a good fitting of the different 279 

models on the data. Moreover, the predictions over 2017-2020 were based on a model trained on the whole 280 

dataset, i.e. 76 months. This hypothesis was also confirmed by the control data falling within the prediction 281 

intervals. The latter were wide, especially regarding the upper bound, which was mainly due to the ETS 282 

component model and the long-term prediction leading to high standard deviations at the end of 3-year 283 

forecasting period. 284 

Another limit of our study arising from the data is the low number of non-imported episodes, especially at 285 

the beginning of the study period where zeroes were frequent. Because some time-series methods cannot 286 

deal with such repeated zeroes, we had to modify the non-imported time-series by adding a fictional episode 287 

to each month to ensure focus on the seasonality. This is unlikely to impact our findings regarding the 288 

seasonality and global trend of this time-series since the addition of an episode was constant through time. 289 

However, this low number may be a consequence of the criteria used to classify an episode as imported. 290 

Indeed, an episode was considered as internationally-imported if the first patient had been repatriated or 291 

hospitalized abroad in the past 12 months. These criteria may therefore underestimate the total number of 292 

non-imported episodes which are incorrectly considered as imported ones, but we assume that may 293 

correspond to only a few episodes. 294 

In conclusion, time-series modeling appears to be a useful tool for the study of the spread of antibiotic 295 

resistance in both quantifying the seasonality and forecasting. The seasonality of CPE episodes highlighted 296 

in our study need to be further investigated, in order to better account for this phenomenon. Prevention and 297 

control efforts should be maintained to better control CPE epidemic including reinforcement of information 298 

to healthcare professionals to promptly detect CPE cases, especially in non-imported cases, and dedicated 299 

financial and human resources to healthcare facilities. In addition, probable spread of CPE in the community 300 

is becoming an immediate challenge to help controlling the outbreak. Infection prevention and control should 301 

thus be reinforced to avoid autochthonous cases, which would place undue strain on the French healthcare 302 

system. 303 
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Table 1 Accuracy parameters of modeling methods of CPE episodes in France during training (2010-2014) 394 

and test (2015-2016) periods. 395 

Model Training set (2010-2014) Test set (2015-2016) 

 RMSE MAE MAPE RMSE MAE MAPE 

SARIMA 5.91 4.77 19.23 17.90 13.32 14.99 

Tslm 6.72 5.22 17.72 20.54 16.39 18.47 

X-11 seasonal adjustment 4.95 4.41 18.08 17.40 12.86 14.06 

ETS model 7.11 5.56 20.91 18.45 14.68 17.76 

Holt-Winters model 8.09 6.53 21.46 25.16 17.60 20.25 

NNAR 4.87 3.93 16.42 32.11 26.59 27.40 

TBATS model 4.35 3.35 14.25 16.06 13.08 15.24 

Average stacking* 3.72 2.81 11.14 15.92 12.65 14.39 

Convex stacking 3.29 2.65 11.70 18.81 14.53 15.60 

Linear stacking 3.13 2.55 11.24 20.22 16.08 17.09 

RMSE: Root mean squared error. MAE: Mean absolute error. MAPE: Mean absolute percentage error. 396 

* Average stacking based on the three following component models: X-11 seasonal adjustment, 397 

multiplicative Holt-Winters method, and TBATS. 398 
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 401 

Figure 1 Summary of time periods used for (a) model building and (b) forecasting of the number of CPE 402 

episodes in France. 403 



 
 

 404 

Figure 2 The SI ratios chart of CPE episodes using data on 3,559 episodes in France from August 2010 405 

to November 2016. Average of seasonal factors per month is represented with lines and seasonal-to-406 

irregular ratios by dots. This figure appears in colour in the online version of JAC and in black and white in 407 

the printed version of JAC.408 



 
 

 409 

Figure 3 Representation of the number and corresponding trend of (a) imported episodes and (b) non-410 

imported episodes, and SI ratios chart of (c) imported episodes and (d) non-imported episodes. One fictional 411 

episode was added each month over the study period for the non-imported time-series. Average of seasonal 412 

factors per month is represented with lines and seasonal-to-irregular ratios by dots. This figure appears in 413 

colour in the online version of JAC and in black and white in the printed version of JAC.414 



 
 

 415 

Figure 4 Prediction over a 4-year period of CPE episodes using data on 3559 episodes in France from 416 

August 2010 to November 2016 and observed number of CPE episodes from December 2016 to December 417 

2018. This figure appears in colour in the online version of JAC and in black and white in the printed version 418 

of JAC. 419 


