

Health and economic consequences of applying the United States' PM2.5 automobile emission standards to other nations: a case study of France and Italy

S. Kim, C. Xiao, I. Platt, Z. Zafari, Martine Bellanger, P. Muennig

▶ To cite this version:

S. Kim, C. Xiao, I. Platt, Z. Zafari, Martine Bellanger, et al.. Health and economic consequences of applying the United States' PM2.5 automobile emission standards to other nations: a case study of France and Italy. Public Health, 2020, 183, pp.81-87. 10.1016/J.PUHE.2020.04.024 . hal-02625385

HAL Id: hal-02625385 https://ehesp.hal.science/hal-02625385

Submitted on 3 Jun2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Manuscript title: Health and economic consequences of applying the United States' PM_{2.5} automobile emissions standards to other nations: a case study of France and Italy

Authors:

Sooyoung Kim^a, MPH; Christina Xiao^b, MPH ; Isabel Platt^a, BA; Zafar Zafari^{c,d}, PhD; Martine Bellanger^b, PhD; Peter Muennig^a, MD, MPH

^a Department of Health Policy and Management, Columbia University Mailman School of Public Health (772 West 168th Street, 10032 New York, New York, United States)

^b Ecole des Hautes Etudes en Sante Publique (15 Avenue du Professeur Léon Bernard, 35043 Rennes, France)

^c Global Research Analytics for Population Health, Columbia University Mailman School of Public Health (772 West 168th Street, 10032 New York, New York, United States)

^d School of Pharmacy, University of Maryland (772 West 168th Street, 10032 New York, New York, United States)

Corresponding author: Christina Xiao, cxiao94@gmail.com, 15 Avenue du Professeur Léon Bernard, 35043 Rennes, France Manuscript title: Health and economic consequences of applying the United States' PM_{2.5}
 automobile emissions standards to other nations: a case study of France and Italy
 3

- 4
- 5

6 Abstract

- 7 Introduction: The US has among the world's strictest automobile emissions standards, but it is now loosening them. It is unclear where a nation should draw the line between the 8 associated cost burden imposed by regulations and the broader societal benefits associated 9 10 with having cleaner air. Our study examines the health benefits and cost-effectiveness of introducing stricter vehicle emissions standards in France and Italy. 11 Methods: We used cost-effectiveness modelling to measure the incremental quality-12 13 adjusted life years (QALYs) and cost (EUR) of adopting more stringent US vehicle emission standards for PM_{2.5} in France and Italy. 14 Results: Adopting Obama-era US vehicle emissions standards would likely save money and 15 lives for both the French and Italian populations. In France, adopting US emissions 16 standards would save €1,000 and increase QALYs by 0.04 per capita. In Italy, the stricter 17 standards would save €3,000 and increase QALYs by 0.31. The results remain robust in 18 both the sensitivity analysis and probabilistic Monte Carlo simulation model. 19 Conclusions: Adopting more stringent emissions standards in France and Italy would save 20 money and lives. 21
- 22

24 Introduction

Air pollution remains the primary environmental source of premature mortality in the 25 European Union (EU), causing about 400,000 deaths per year¹. Transportation is responsible for 26 roughly half of all airborne pollutants in the EU. Regulations on transportation have led to 27 notable improvements in air quality in the region between 1990 and 2015¹. Nevertheless, the 28 United States (US) is relaxing vehicle emissions standards. The impact of incremental increases 29 or decreases in vehicle emissions standards on population health is roughly known, but less is 30 31 known about the trade-offs associated with such changes on macro-economic well-being relative 32 to health and health system costs. This paper explores the trade-off between more stringent vehicle emissions standards and 33 regulatory costs. It does so by modeling the effect of applying more stringent standards to two 34 case study countries. We use the relatively stringent Obama-era standard for particulate matter 35 (PM) 2.5 as a reference because there are data on the macro-economic impacts of applying these 36 37 regulations over time in the US. Likewise, a number of studies have been conducted on the relationship between vehicle emissions and air quality in France and Italy. 38 PM_{2.5} refers to air particles that are 2.5 microns in diameter or less. Particles of this size 39 can enter the circulatory system via the respiratory system, and thereby cause cardiovascular 40 disease, lung cancer, and premature mortality ^{2–8}. While deaths associated with PM_{2.5} have 41 42 declined between 1990 and 2015 in the US and the EU overall, they continue to increase in Italy, Greece, and Malta⁹. The estimated number of Years-of-Life-Lost (YLL) from PM_{2.5} in 2014 was 43 852 per 100,000 inhabitants in the EU, 602 per 100,000 inhabitants in France, and 1024 per 44 100,000 inhabitants in Italy¹. By contrast, YLLs in the US are small and limited mostly to the 45 greater Los Angeles area. 46

47 Cars and trucks contribute to about half of the total $PM_{2.5}$ in the EU ¹. However, there is 48 considerable variation in the relationship between automobile emissions and $PM_{2.5}$ by geographic 49 region, with some global cities being impacted to a greater extent by factories and power plants 50 ¹⁰.

51 Current Federal regulations for vehicle emission standards set in the US by the 52 Environmental Protection Agency ¹¹ are stricter than the EU's current Euro Six vehicle emission 53 standards for all major pollutants, except for carbon dioxide ¹. For PM_{2.5}, the target annual 54 exposure limit defined by the US EPA in 2012 is 12µg/m^{3 12,13}.

The World Health Organization (WHO) recommends that PM_{2.5} not exceed 10µg/m^{3 14}, a 55 stringent limit for which there are few case study nations. We chose the US as a comparator 56 rather than the WHO recommendation because there are extant data and at $12\mu g/m^3$, it is very 57 close to the WHO target. The 2008 EU legislation on ambient vehicle emissions sets vehicle 58 emissions limits for the entire EU and requires member states to place restrictions on harmful air 59 pollutants, including pollutants from on-road vehicles ¹⁵⁻¹⁸. Under this directive, the EU member 60 states are required to limit population exposure to $PM_{2.5}$ to an annual average of $25\mu g/m^3$ by 2015 61 and 20μ g/m³ by 2020^{1, 15-18}. In 2017, 6% to 7% of the EU urban population was exposed to 62 PM_{2.5} concentrations exceeding the EU limit and about 67% were exposed to levels exceeding 63 the WHO target ¹⁵. 64

Italy and France's $PM_{2.5}$ emission exposure patterns are roughly similar to the range of emissions for other European countries. According to the EEA, the annual mean $PM_{2.5}$ emission in 2015 was $13\mu g/m^3$ in France and $19\mu g/m^3$ in Italy ¹⁶, compared to an average of $13.9 \ \mu g/m^3$ for all EU-28 countries ¹⁶. While France and Italy fall below the current EU limit of $25\mu g/m^3$, they still exceed both the US's limit of $12 \ \mu g/m^3$ and the WHO's Air Quality Guidelines of $10\mu g/m^3$ ^{13,14,17}. Some eastern EU nations like Poland, Serbia, and Bulgaria have emissions averages that
 are much higher than Italy ¹⁶.

In our analysis, we estimated health impacts in terms of premature deaths and years of life lost due to $PM_{2.5}$ emission exposure ^{1,18}. We also estimated economic costs associated with morbidity related to road traffic pollution in the EU ^{18,19}. Using these inputs, we developed a costeffectiveness analysis to model the effect of applying the stricter US vehicle emissions standards and enforcement to France and Italy.

77

78 Methods

Using a Markov model, we simulated relevant health and economic consequences of reduced PM_{2.5} emissions associated with two scenarios in France and Italy: (1) "Keep the standard as is;" and (2) "Adopt and enforce US emissions standards." We estimated qualityadjusted life years (QALYs), health system costs, regulatory costs, vehicle upgrade costs, and fuel savings ¹³. All parameters were derived from the existing literature and are summarized in Table 1.

We ran our model over the course of the lifetime of our standard cohort and discounted
future QALYs and costs at a discount rate of 3% ²⁰. Final estimates of incremental costs per
QALY were made in constant 2018 €. We conducted multiple one-way sensitivity analyses to
quantify the robustness of our estimates against broad changes in the core parameters and
assumptions of the model. Additionally, we performed a Monte Carlo simulation with 10,000
random samples to capture uncertainty in our model outcomes across all variables. We built our
model in TreeAge Pro 2016 software ²¹.

92

93 *PM*_{2.5} *Emissions Regulations: US vs. France and Italy*

94	In our model, we explored the potential impact of stricter regulations in two European
95	countries on health and costs. We limited the regulations to only light-duty vehicles, which are
96	defined as passenger cars for everyday use ^{22,23} and account for more than 80% of registered
97	vehicles in France and Italy ²⁴ . We omitted light- and heavy-duty trucks from our analysis,
98	including commercial trucks, because there is limited data on upgrading costs and fuel savings.
99	Italy and France have a similar proportion of heavy vehicles on the road, extensive rail networks,
100	and while Italy imports a good deal of energy from France, 80% of this power comes from
101	nuclear power generation and hydropower ^{25,26} . This allows for a natural control between the two
102	case study nations.

103

104 *Demographic Data*

We measured the impact of stricter vehicle emissions standards on all residents of France and all residents of Italy as separate arms of the model. In our Markov model, the average age, population size, and age-specific mortality rates for each country were retrieved from Eurostat statistics ²⁷. We also applied different regulatory standards in France, Italy, and the US to a uniform, hypothetical cohort. This allows us to provide estimates of the impacts of regulatory standards on health that are independent of socio-demographic differences between the three nations.

112

113 Cost-Effectiveness Model

Our Markov decision-analytic model had two arms: "Keep the standard as is" and "Adopt US emissions standards." Our hypothetical regulatory changes could reduce the risk of lung cancer, stroke, asthma, and overall mortality ^{18,19}. However, to ensure that our numbers are conservative, we focused on two major health effects of ambient PM_{2.5}: asthma and cardiovascular disease (CVD). Our model, therefore, assumes five health states: perfect health,
chronic asthma, chronic CVD, comorbid asthma and CVD, and death. Excluding other pollutants
also helps ensure that numbers are conservative on the benefits side of the cost-effectiveness
analysis.

Our Markov model simulates the impact of reduced PM_{2.5} levels on the risk of developing 122 new asthma, chronic CVD, and comorbid asthma, and CVD. We also modeled the risk of acute 123 exacerbations for people living with chronic asthma and the risk of acute CVD events such as 124 125 stroke or myocardial infarction among people living with chronic CVD. We ran the model from 2018 until 2050 to evaluate the impact of the policy over the lifetime of each standardized cohort. 126 We then conducted a one-way sensitivity analysis using the confidence intervals reported 127 in the literature to see how changing a given parameter would impact the incremental cost-128 effectiveness ratio (ICER)²⁸. Finally, we developed a Monte Carlo simulation for probabilistic 129 sensitivity analysis using a normal probability distribution based on the reported standard errors 130 from the literature ²⁸. We ran the simulation with a willingness-to-pay (WTP) threshold of 131 €46,000, referring to the European survey on willingness-to-pay for improved air quality in an 132 economic study ²⁹ to assess the robustness of our analysis. 133

134

135 *Probabilities and Rates*

Model parameters for the incidence rates for asthma, CVD, exacerbations, and relapses, was derived from the literature. The life tables and demographics for France and Italy were each obtained from their national statistics bureaus ^{30,31}. Where a country-specific value for a given parameter was not available, we used the reported value for a demographically similar country. Where co-morbid states are present, we adjusted health states to reflect independent probabilities ^{32–35}. We averaged the reported values from as many meta-analyses and nationwide studies as
possible to improve the accuracy and generalizability of our findings.

- The "Adopt US standards" scenario evaluates the economic costs and health benefits of reducing $PM_{2.5}$ in France and Italy to those currently seen in the US. We applied the drops in $PM_{2.5}$ levels to the relevant relative risks based on data from the literature ^{3,6,7,36}. We then modified the baseline risk of health states in the control arm, "Keep the standard as is," to inform the corresponding probabilities in the intervention arm. For a complete list of parameters, see Table 1.
- 149

150 Costs

We included health care-related costs, the costs of implementing new test facilities, and fuel savings from stricter $PM_{2.5}$ emissions standards as direct costs ¹¹. We quantified indirect costs through health-related productivity gains associated with reduced $PM_{2.5}$ levels ^{3,6,7,35}. All the costs associated with this policy change were taken from the literature.

To determine the direct costs of introducing US standards to both France and Italy, we 155 used data from the US EPA's 2014 Regulatory Impact Analysis ¹¹. Costs included a one-time 156 implementation cost for PM_{2.5} regulation test facilities, the unit cost of upgrading vehicles with 157 additional hardware, the indirect cost of additional labor, and the annual fuel savings after the 158 159 upgrade for gasoline vehicles ¹¹. To compute the total cost of vehicle upgrades, we multiplied the unit costs per vehicle by the annual number of light-duty vehicles sold in each country. For each 160 health state, we included on-going costs of chronic asthma or CVD management ^{33,37–40}, costs of 161 asthma exacerbation ⁴¹, and costs of acute CVD events ^{37,40}. 162

164 Utilities

165	Health outcomes were measured in terms of QALYs, a measure of remaining life
166	expectancy, adjusted to reflect the average state of health of a cohort ⁴² . The health state utility
167	value for chronic asthma was derived from literature ^{43,44} . We multiplied the distribution of
168	asthma health states, defined by the Global Initiative for Asthma ⁴⁵ , by their corresponding utility
169	values ⁴⁶ . For CVD, we compiled the health utility values from the literature based on the
170	EuroQol-5 Dimension (EQ-5D) scale ^{47,48} . All relevant asthma and CVD events were assigned a
171	disutility value based on literature, found in Table 1.
172	To measure the impact of an ambient $PM_{2.5}$ decrease on quality of life, we used the
173	reported QALY gain/loss from the literature, and assumed a linear association between PM2.5 and
174	QALYs.
175	
176	Table 1. List of parameters used in the Markov Model
177	
178	[Insert Table 1 here.]
179	
180	Results
181	In France, the added direct and indirect costs of not adopting and enforcing the US
182	regulations (keeping the status quo) amounted to €49,000 (95% CI €25,000, €90,000) while
183	adopting the US PM _{2.5} emission standards would cost €48,000 (95% CI €24,000, €88,000). The
184	number of QALYs associated with the status quo scenario was 19.63 (95% CI 18.47, 20.21),
185	while the number of QALYs associated with adopting US regulations was 19.67 (95% CI 18.50,
186	20.24). In Italy, the cost associated with not adopting stricter PM _{2.5} regulations was €39,000
187	(95% CI €6,000, €192,000), while adopting the standards was associated with a cost of €36,000

188	(95% CI €5,000, €175,000). The corresponding QALYs for the status quo and new emission
189	regulations were 27.38 (95% CI 26.15, 28.15) and 27.69 (95% CI 26.39, 28.45) respectively.
190	With incremental costs of -€1,000 for France and -€3,000 for Italy, as well as incremental
191	QALYs of 0.04 for France and 0.31 for Italy, adopting US emission standards saves costs and
192	lives for both French and Italian populations.
193	
194	Table 2. Incremental costs, incremental quality-adjusted life years, and incremental cost-
195	effectiveness ratios for France and Italy for current vehicle emissions standards versus standards
196	set in the US.
197	
198	[Insert Table 2 here]
199	
200	The one-way sensitivity analysis indicated that the results of our model were robust to
201	changes to the parameter values, such as changes in the relative risk of CVD onset, ongoing cost
202	of chronic asthma, new CVD onset incidence rate, etc. (the full list of model parameters
203	subjected to the sensitivity analysis can be found in Appendix 1, Figure S1). The parameter that
204	affected our model the most was variability in the relative risk of asthma incidence due to an
205	increase in PM _{2.5} for France and ongoing cost of chronic CVD for Italy (Appendix 1, Figure S1).
206	
207	[Insert Figure 1 Here.]
208	
209	Figure 1. Incremental Cost-Effectiveness Scatter Plot with 95% Credibility Interval (defined as
210	inner space of the grey eclipse) falling within and outside of the willingness-to-pay (WTP)
211	threshold of €46,000 France and Italy.

213	From the probabilistic Monte Carlo simulation (Figure 1), 93.8% of randomly-generated
214	samples for France and 87.4% of samples from Italy were both cost- and life-saving for adopting
215	US PM _{2.5} emission standards compared to no change in air pollution policies. An additional
216	0.7% of French samples and 10.1% of Italian samples fell within a WTP of €46,000. Despite
217	excluding important benefits associated with regulatory changes, less than six percent of the
218	simulations for both France and Italy fell outside of the WTP threshold.
219	From the acceptability curve, with a WTP of €46,000, the intervention has 98.7%
220	acceptability for France and 96.0% acceptability for Italy. Within the confidence interval of
221	€27,000 - €110,000, the intervention maintained higher than 95% acceptability for both countries.
222	(Appendix 1, Figure S2)
223	
224	Discussion
225	We set out to illustrate the changes in societal costs and health associated with changes in
226	PM _{2.5} regulations. We used two nations as case studies in order to illustrate the tradeoffs
227	associated with incremental regulatory changes. Cost-saving preventive health interventions are
228	very rare, and should be implemented so long as there are no overriding ethical concerns
229	associated with doing so ^{20,49} . We find that improving vehicle emissions standards and
230	enforcement is one of those rare policies that could save both money and lives. The EU has not
231	kept pace with the US with respect to vehicle emissions standards set by the US EPA.
232	Enforcement of violations is also weak in many EU member states. As a result, the EEA reports
233	that about 400,000 deaths occur each year as a result of long-term exposure to excessive $PM_{2.5}$ ¹⁵ .

hard. This is striking for a block of nations that also offers near universal care to its occupants.

Full quantification of the economic and health toll association with regional changes in 236 regulation would be a massive undertaking given the large national variations in emissions, 237 pricing of health goods, and other model inputs, and mean values for EU are of little use. Given 238 our finding that both nations would realize savings, it is likely that most EU nations would realize 239 similar gains. However, countries with tough regulations might experience increases in costs 240 without meaningful gains in health. Likewise, our predictions are not valid for countries with 241 weak regulations that might enact more radical changes that could produce unforeseen and 242 243 unintended macroeconomic consequences.

Our study also serves as a warning for US policy. Currently, the US is considering 244 relaxing environmental protections, and one EPA scientific advisor has indicated that the air in 245 the US is "too clean" to breathe for optimal health ⁵⁰. Relaxing standards, even to a small degree, 246 would likely lead to increases in deaths, disability, and costs. This is likely to be a bigger problem 247 in the US than in Europe not only because driving is more prevalent, but also because healthcare 248 costs are roughly twice those of France or Italy and growing much more rapidly over time ^{51–53}. A 249 recent study found that PM2.5 concentrations are highly predictive of Covid-19 deaths in the 250 United States ^{54,55}. 251

Our study has a number of limitations. First, we showed two case studies rather than 252 providing mean impacts in the EU. Some nations in the EU have much higher standards than 253 254 France or Italy, while others have much lower standards. Like the EU, US states vary with respect to enforcement of EPA vehicle emissions standards. However, because the US 255 automobile market is somewhat monolithic, automobile emissions and fuel efficiency standards 256 in the US are driven more by the state with the toughest regulations than by EPA standards. 257 Another limitation is that our key model inputs-pollution-associated morbidity and 258 mortality-are not derived from randomized trials in humans (for ethical reasons). Rather, they 259

260	are derived from observational and quasi-experimental studies of humans backed by experimental
261	animal models. The health effects of pollution could be better or worse than those we present
262	here. We account for error in estimates of these and other model inputs by using a broad
263	sensitivity analysis and excluding potentially important pollutants from our estimates.
264	
265	Conclusions
266	Most medical interventions cost well over \$100,000 per QALY gained ²⁸ , however
267	broader social policies such as education interventions, can save both money and lives ^{56–59} . We
268	show that titrating regulatory controls to optimize health could be added to the armament of
269	policies, including vaccines and education interventions ^{56–59} , that improve health.
270	

271 Acknowledgments:

- 272 Disclaimers: The research presented in this paper is that of the authors. All data is available in the
- 273 main text or the supplementary materials. The TreeAge model can be provided upon request. All
- data collection and analysis were done in 2018, and the study is exempted from IRB approval.
- 275 Declarations of interest: none
- 276 Funding: This work is supported by Global Research Analytics for Population Health (GRAPH).
- 277 Competing interests: None declared
- 278 Ethical approval: Not required (Quasi experimental study).

295 References

- 296 1. European Environment Agency. Air quality in Europe 2017 report [Internet].
- 297 Copenhagen; 2017 [cited 2019 Jun 9]. Available from:
- 298 https://www.eea.europa.eu/publications/air-quality-in-europe-2017
- 299 2. Beelen R, Raaschou-Nielsen O, Stafoggia M, Andersen ZJ, Weinmayr G, Hoffmann B, et
- 300 al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of
- 301 22 European cohorts within the multicentre ESCAPE project. *Lancet*. 2014;**383**(9919):785–
- 302 95. doi:10.1016/S0140-6736(13)62158-3
- 303 3. Jacquemin B, Siroux V, Sanchez M, Carsin AE, Schikowski T, Adam M, et al. Ambient air
- 304 pollution and adult asthma incidence in six European cohorts (ESCAPE). *Environ Health*

305 *Perspect*. 2015;**123**(6):613–21. doi:10.1289/ehp.1408206

- Schultz AA, Schauer JJ, Malecki KM. Allergic disease associations with regional and
 localized estimates of air pollution. *Environ Res.* 2017;155:77–85.
- 308 doi:10.1016/j.envres.2017.01.039
- 5. Shah ASV, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, et al. Short term
- 310 exposure to air pollution and stroke: Systematic review and meta-analysis. *BMJ*.
- 311 2015;**350**:h1295. doi:10.1136/bmj.h1295
- 312 6. Wellenius GA, Burger MR, Coull BA, Schwartz J, Suh HH, Koutrakis P, et al. Ambient
- air pollution and the risk of acute ischemic stroke. *Arch Intern Med.* 2012;**172**(3):229–34.
- 314 doi:10.1001/archinternmed.2011.732
- 315 7. Zheng XY, Ding H, Jiang LN, Chen SW, Zheng JP, Qiu M, et al. Association between Air
- 316 pollutants and asthma emergency room visits and hospital admissions in time series
- 317 studies: A systematic review and meta-Analysis. *PLoS One*. 2015;**10**(9):e0138146.
- 318 doi:10.1371/journal.pone.0138146

319	8.	Yang WS, Zhao H, Wang X, Deng Q, Fan WY, Wang L. An evidence-based assessment
320		for the association between long-term exposure to outdoor air pollution and the risk of
321		lung cancer. <i>Eur J Cancer Prev.</i> 2016; 25 (3):163–72. doi:10.1097/CEJ.00000000000158
322	9.	Health Effects Institute. State of Global Air 2017. Special Report. [Internet]. Health
323		Effects Institute. 2017 [cited 2019 Jul 9]. p. 1–15. Available from:
324		https://www.stateofglobalair.org/sites/default/files/SOGA2017_report.pdf.
325	10.	Lau J, Hung WT, Cheung CS, Yuen D. Contributions of roadside vehicle emissions to
326		general air quality in Hong Kong. Transp Res Part D Transp Environ. 2008;13(1):19–26.
327		doi: 10.1016/j.trd.2007.10.004
328	11.	United States Environmental Protection Agency. Final Rule for Model Year 2017 and
329		Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel
330		Economy Standards [Internet]. United States Environmental Protection Agency. 2016
331		[cited 2019 May 16]. Available from: https://www.epa.gov/regulations-emissions-
332		vehicles-and-engines/final-rule-model-year-2017-and-later-light-duty-vehicle
333	12.	Giannadaki D, Lelieveld J, Pozzer A. Implementing the US air quality standard for PM2.5
334		worldwide can prevent millions of premature deaths per year. Environ Heal A.
335		2016; 15 (1):88. doi:10.1186/s12940-016-0170-8
336	13.	United States Environmental Protection Agency. Table of Historical Particulate Matter
337		(PM) National Ambient Air Quality Standards (NAAQS) [Internet]. United States
338		Environmental Protection Agency. 2018 [cited 2020 Apr 7]. Available from:
339		https://www.epa.gov/pm-pollution/table-historical-particulate-matter-pm-national-
340		ambient-air-quality-standards-naaqs
341	14.	World Health Organization. WHO Air quality guidelines for particulate matter, ozone,
342		nitrogen dioxide and sulfur dioxide [Internet]. Geneva; 2006 [cited 2019 May 31].

343 Available from:

https://apps.who.int/iris/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_en 344 g.pdf;jsessionid=B69B7F29F7F6AE305EC9F1A362BD9C89?sequence=1 345 15. European Environment Agency. Air quality in Europe 2019 [Internet]. European 346 Environment Agency. 2019 [cited 2020 Apr 7]. Available from: 347 https://www.eea.europa.eu//publications/air-quality-in-europe-2019 348 16. European Environment Agency. Air pollutant concentrations at station level (statistics) 349 350 [Internet]. European Environment Agency. 2017 [cited 2019 May 29]. Available from: https://www.eea.europa.eu/data-and-maps/data/air-pollutant-concentrations-at-station 351 17. European Commission. Air Quality Standards [Internet]. European Commission. 2019 352 [cited 2019 Jun 8]. Available from: 353 https://ec.europa.eu/environment/air/quality/standards.htm 354 18. Pascal M, Corso M, Chanel O, Declercq C, Badaloni C, Cesaroni G, et al. Assessing the 355 356 public health impacts of urban air pollution in 25 European cities: Results of the Aphekom project. Sci Total Environ. 2013;449:390-400. doi:10.1016/j.scitotenv.2013.01.077 357 19. Chanel O, Perez L, Künzli N, Medina S, Aphekom group. The hidden economic burden of 358 air pollution-related morbidity: evidence from the Aphekom project. Eur J Heal Econ. 359 2016;17(9):1101-15. doi:10.1007/s10198-015-0748-z 360 20. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, et al. 361 Recommendations for conduct, methodological practices, and reporting of cost-362 effectiveness analyses: Second panel on cost-effectiveness in health and medicine. JAMA. 363 2016:316(10):1093-103. doi:10.1001/jama.2016.12195 364 21. Treeage Software. TreeAge Pro 2016. Version R1 [software]. 2016 [cited 2019 May 17]. 365 Available from: http://www.treeage.com/news/treeage-pro-2016-r1-0/ 366

367	22.	European Commission. Vehicle categories [Internet]. European Commission. [cited 2019
368		Apr 3]. Available from: https://ec.europa.eu/growth/sectors/automotive/vehicle-
369		categories_en
370	23.	Transport Policy. US: Vehicle Definitions [Internet]. 2018 [cited 2019 Apr 3]. Available
371		from: https://www.transportpolicy.net/standard/us-vehicle-definitions/
372	24.	European Automobile Manufacturers' Association (ACEA). Vehicles in use - Europe 2017
373		[Internet]. Brussels; 2017 [cited 2019 May 10]. Available from:
374		https://www.acea.be/statistics/article/vehicles-in-use-europe-2017
375	25.	Voorspools KR, D'haeseleer WD. Modelling of electricity generation of large
376		interconnected power systems: How can a CO2 tax influence the European generation mix.
377		Energy Convers Manag. 2006;47(11–12):1338–58.
378		https://doi.org/10.1016/j.enconman.2005.08.022
379	26.	De Beaupuy F. France's Power Emissions Fell in 2019 as Coal's Share Dipped.
380		Bloomberg [Internet]. 2020 Feb 12 [cited 2020 Apr 10]; Available from:
381		https://www.bloomberg.com/news/articles/2020-02-12/france-s-power-emissions-tumbled-
382		in-2019-as-coal-s-share-slumped
383	27.	Eurostat. Eurostat Database [Internet]. Eurostat; 2020 [cited 2019 May 7]. Available from:
384		https://ec.europa.eu/eurostat/data/database
385	28.	Muening P, Bounthavong M. Cost-effectiveness analyses in health: a practical approach.
386		3 rd edition. San Francisco: Jossey-Bass; 2016.
387	29.	Desaigues B, Ami D, Bartczak A, Braun-Kohlová M, Chilton S, Czajkowski M, et al.
388		Economic valuation of air pollution mortality: A 9-country contingent valuation survey of
389		value of a life year (VOLY). <i>Ecol Indic</i> . 2011; 11 (3):902–10.
390		doi:10.1016/j.ecolind.2010.12.006

391	30.	Institut national d'études démographiques (INED). Mortality rates by sex and age
392		[Internet]. Institut national d'études démographiques (INED). 2017 [cited 2019 Apr 25].
393		Available from: https://www.ined.fr/en/everything_about_population/data/france/deaths-
394		causes-mortality/mortality-rates-sex-age/
395	31.	Ministero della Salute. Lo stato di salute della popolazione - RSSP 2012-2013 [Internet].
396		Ministero della Salute. 2014 [cited 2019 Apr 25]. Available from:
397		http://www.rssp.salute.gov.it/rssp2012/paginaMenuSezioneRssp2012.jsp?sezione=statoSal
398		ute&lingua=italiano
399	32.	Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and
400		Stroke Statistics'2017 Update: A Report from the American Heart Association.
401		Circulation. 2017;135:e146-603. doi:10.1161/CIR.000000000000485
402	33.	Demoly P, Gueron B, Annunziata K, Adamek L, Walters RD. Update on asthma control in
403		five European countries: Results of a 2008 survey. Eur Respir Rev. 2010;19(116):150-7.
404		doi:10.1183/09059180.00002110
405	34.	Institut National de la statistique et des études économiques (INSEE). Population changes:
406		Demographic balance sheet 2017 - Retrospective Tables [Internet]. Institut National de la
407		statistique et des études économiques (INSEE). 2018 [cited 2019 Apr 25]. Available from:
408		https://www.insee.fr/en/statistiques/2382601?sommaire=2382613#consulter-sommaire
409	35.	Italian National Institute of Statistics (ISTAT). Demographic Indicators - Estimates for the
410		year 2015 [Internet]. Italian National Institute of Statistics (ISTAT). 2016 [cited 2019 Apr
411		25]. Available from: https://www.istat.it/it/archivio/180494
412	36.	Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, et al. Long-term air
413		pollution exposure and cardio-respiratory mortality: A review. Environmental Health.
414		2013; 12 (1):43. doi:10.1186/1476-069X-12-43

415	37.	Chevreul K, Durand-Zaleski I, Gouépo A, Fery-Lemonnier E, Hommel M, Woimant F. Cost
416		of stroke in France. Eur J Neurol. 2013; 20 (7):1094–100. doi:10.1111/ene.12143
417	38.	Dal Negro RW, Distante C, Bonadiman L, Turco P, Iannazzo S. Cost of persistent asthma
418		in Italy. Multidiscip Respir Med. 2016;11(1):44. doi:10.1186/s40248-016-0080-1
419	39.	Doz M, Chouaid C, Com-Ruelle L, Calvo E, Brosa M, Robert J, et al. The association
420		between asthma control, health care costs, and quality of life in France and Spain. BMC
421		<i>Pulm Med.</i> 2013; 13 (1):15. doi:10.1186/1471-2466-13-15
422	40.	Fattore G, Torbica A, Susi A, Giovanni A, Benelli G, Gozzo M, et al. The social and
423		economic burden of stroke survivors in Italy: A prospective, incidence-based, multi-centre
424		cost of illness study. BMC Neurol. 2012;12(1):137. doi:10.1186/1471-2377-12-137
425	41.	Van Ganse E, Antonicelli L, Zhang Q, Laforest L, Yin DD, Nocea G, et al. Asthma-related
426		resource use and cost by GINA classification of severity in three European countries.
427		Respir Med. 2006;100(1):140-7. doi:10.1016/j.rmed.2005.03.041
428	42.	National Institute for Health and Care Excellence. The NICE Glossary [Internet]. National
429		Institute for Health and Care Excellence. 2018 [cited 2019 Apr 25]. Available from:
430		https://www.nice.org.uk/glossary?letter=q
431	43.	Zafari Z, Sadatsafavi M, Marra CA, Chen W, FitzGerald JM. Cost-effectiveness of
432		bronchial thermoplasty, omalizumab, and standard therapy for moderate-to-severe allergic
433		asthma. PLoS One. 2016;11(1). doi:10.1371/journal.pone.0146003
434	44.	Zafari Z, Sadatsafavi M, Mark FitzGerald J. Cost-effectiveness of tiotropium versus
435		omalizumab for uncontrolled allergic asthma in US. Cost Eff Resour Alloc. 2018;16(1):3.
436		doi:10.1186/s12962-018-0089-8
437	45.	Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention
438		[Internet]. 2018 [cited 2019 May 11]. Available from: https://ginasthma.org/reports/

4.40	16	Zeferi Z. Lewel I.D. Eitzersteld IM. Codeteeferi M. Economic and health effect of full
440	46.	Zafari Z, Lynd LD, Fitzgeraid JM, Sadatsafavi M. Economic and health effect of full
441		adherence to controller therapy in adults with uncontrolled asthma: A simulation study. J
442		Allergy Clin Immunol. 2014; 134 (4):908-915.e3. doi:10.1016/j.jaci.2014.04.009
443	47.	Jiao B, Zafari Z, Will B, Ruggeri K, Li S, Muennig P. The cost-effectiveness of lowering
444		permissible noise levels around U.S. airports. Int J Environ Res Public Health.
445		2017; 14 (12):1497. doi:10.3390/ijerph14121497
446	48.	Ara R, Brazier JE. Populating an economic model with health state utility values: Moving
447		toward better practice. Value Heal. 2010;13(5):509-18. doi:10.1111/j.1524-
448		4733.2010.00700.x
449	49.	Weinstein MC, Siegel JE, Gold MR, Kamlet MS, Russell LB. Recommendations of the
450		panel on cost-effectiveness in health and medicine. JAMA J Am Med Assoc.
451		1996; 276 (15):1253. doi:10.1001/jama.1996.03540150055031
452	50.	Brueck H. One of the EPA's newest science experts thinks 'modern air' is too clean to
453		breathe. Business Insider [Internet]. 2017 Nov 8 [cited 2019 May 17]; Available from:
454		https://www.businessinsider.fr/us/scott-pruitt-scientific-advisory-board-environmental-
455		protection-agency-modern-air-robert-phalen-2017-11
456	51.	Charlesworth A. Why is health care inflation greater than general inflation? J Health Serv
457		Res Policy. 2014;19(3):129–30. doi:10.1177/1355819614531940
458	52.	Dunn A, Grosse SD, Zuvekas SH. Adjusting Health Expenditures for Inflation: A Review
459		of Measures for Health Services Research in the United States. Health Serv Res.
460		2018; 53 (1):175–96. doi:10.1111/1475-6773.12612
461	53.	Roman BR. On Marginal Health Care — Probability Inflation and the Tragedy of the
462		Commons. N Engl J Med. 2015;372(6):572–5. doi:10.1056/NEJMms1407446

- 463 54. Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and
- 464 COVID-19 mortality in the United States. *medRxiv*. 2020. doi:
- 465 https://doi.org/10.1101/2020.04.05.20054502
- 466 55. Muennig P. Opinion | As Fears of Wuhan's Coronavirus Spread. The New York Times
- 467 [Internet]. 2020 Jan 31 [cited 2020 Apr 10]; Available from:
- 468 https://www.nytimes.com/2020/01/31/opinion/letters/wuhan-coronavirus.html
- 469 56. Muennig PA, Epstein M, Li G, DiMaggio C. The cost-effectiveness of New York City's
- 470 Safe Routes to School Program. *Am J Public Health*. 2014;**104**(7):1294–9.
- 471 doi:10.2105/AJPH.2014.301868
- 472 57. Muennig PA, Quan R, Chiuzan C, Glied S. Considering whether Medicaid is worth the
- 473 cost: Revisiting the Oregon Health Study. *Am J Public Health*. 2015;**105**(5):866-71.
- 474 doi:10.2105/AJPH.2014.302485
- 475 58. Muennig PA, Mohit B, Wu J, Jia H, Rosen Z. Cost Effectiveness of the Earned Income
- 476 Tax Credit as a Health Policy Investment. *Am J Prev Med.* 2016;**51**(6):874–81.
- 477 doi:10.1016/j.amepre.2016.07.001
- 478 59. Wu J, Dean KS, Rosen Z, Muennig PA. The Cost-effectiveness Analysis of Nurse-Family
 479 Partnership in the United States. *J Health Care Poor Underserved*. 2017;28(4):1578–97.
- 480 doi:10.1353/hpu.2017.0134
- 481 60. United States Environmental Protection Agency. Particulate Matter (PM2.5) Trends
- 482 [Internet]. United States Environmental Protection Agency. 2016 [cited 2019 Jun 8.
- 483 Available from: https://www.epa.gov/air-trends/particulate-matter-pm25-trends
- 484 61. Comité des Constructeurs Français d'Automobiles (CCFA). Number of passenger cars
- registered in France in 2013 and 2014, by fuel type [Internet]. Statista: The Statistics
- 486 Portal. 2018 [cited 2019 Apr 25]. Available from:

487		https://www.statista.com/statistics/418737/passenger-car-registrations-in-france-by-fuel/
488	62.	UNRAE. Number of passenger cars sold in Italy from 2014 to 2019, by fuel type
489		[Internet]. Statista: The Statistics Portal. 2016 [cited 2019 Apr 25]. Available from:
490		https://www.statista.com/statistics/417567/passenger-car-sales-in-italy-by-fuel-type/
491	63.	European Central Bank. ECB euro reference exchange rate: US dollar (USD) [Internet].
492		European Central Bank. 2018 [cited 2019 May 5]. Available from:
493		https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rat
494		es/html/eurofxref-graph-usd.en.html
495	64.	Price D, Fletcher M, Van Der Molen T. Asthma control and management in 8,000
496		European patients: The REcognise Asthma and LInk to Symptoms and Experience
497		(REALISE) survey. Npj Prim Care Respir Med. 2014;24(1):14009.
498		doi:10.1038/npjpcrm.2014.9
499	65.	Institute for Health Metrics and Evaluation. Global Burden of Disease Results Tool.
500		Global Health Data Exchange. [Internet]. Institute for Health Metrics and Evaluation. 2018
501		[cited 2019 May 29]. Available from: http://ghdx.healthdata.org/gbd-results-tool
502	66.	Aubas C, Bourdin A, Aubas P, Gamez AS, Halimi L, Vachier I, et al. Role of comorbid
503		conditions in asthma hospitalizations in the south of France. Allergy Eur J Allergy Clin
504		Immunol. 2013;68(5):637-43. doi:10.1111/all.12137
505	67.	Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al.
506		Executive summary: Heart disease and stroke statistics-2010 update: A report from the
507		American Heart Association. Circulation. 2010;121(7):e46-e215.
508		doi:10.1161/CIRCULATIONAHA.109.192667
509	68.	Terzano C, Cremonesi G, Girbino G, Ingrassia E, Marsico S, Nicolini G, et al. 1-year
510		prospective real life monitoring of asthma control and quality of life in Italy. Respir Res.

511 2012;**13**(1):112. doi:10.1186/1465-9921-13-112

Incremental Cost-Effectiveness Scatter Plot - FRANCE

Incremental Cost-Effectiveness Scatter Plot - ITALY

0.16 0.18

Description	France		Italy			
	Base Value	Standa rd Error	Base Value	Standa rd Error	Probabili stic Distribut ion ^a	
General parameters						
Average age of target population ²⁷	<mark>41.4</mark>	-	<mark>45.9</mark>	-		
Total number of target population ²⁷	<mark>66989083</mark>	-	<mark>60589445</mark>	-	-	
Chronic asthma prevalence ³³ (2010)	<mark>0.06</mark>	-	<mark>0.04</mark>	-	-	
Chronic CVD prevalence ^{32,34,35}	<mark>0.054</mark>	-	<mark>0.045</mark>	-	-	
Annual discounting rate ²⁰	0.03	-	0.03	-	-	
Ambient PM2.5 base level (µg/m ³)	<mark>13.00</mark>	-	<mark>19.00</mark>	-	-	
Ambient PM2.5 benchmark level (µg/m ³) ⁶⁰	<mark>7.65</mark>		7.65			
Number of gasoline passenger cars sold in year 2017 ^{61,62}	<mark>777645</mark>	-	<mark>599752</mark>	-	-	
Number of diesel passenger cars sold in year 2017 ^{61,62}	<mark>1089403</mark>	-	1061004	-	-	
Total passenger vehicles on road	<mark>32326000</mark>	-	<mark>37080753</mark>	-	-	

1 Table 1. List of parameters used in the Markov Model

Cost of acute asthma ED visit or	200	_	1 225	_	24
hospitalization ^{41,63}	<u>379</u>	-	1,223	-	Ŷ
On-going cost of chronic asthma	<mark>1,230</mark>	<mark>6,076</mark>	1,407	<mark>118</mark>	γ
Cost of acute CVD attack ^{37,40,63}	<mark>19,279</mark>	-	23,053	<mark>20,929</mark>	γ
On-going cost of chronic CVD	0.358		<mark>5 282</mark>	8 530	24
<mark>37,40,63</mark>	7,550	_	0,202	0,007	Ŷ
One-time facility set-up cost ¹¹	<mark>1,077,089</mark>	-	<mark>8,616,711</mark>	-	γ
Unit cost per vehicle for new	70 77		<u> </u>		
vehicle hardware ^{11,b}	<mark>/0.//</mark>	-	<u>47.73</u>	-	γ
Annual fuel savings per vehicle ^b	1 51	_	1 30	_	γ
(Gasoline vehicles only) ¹¹	1.31		1.50		Ŷ
Probabilities, Rates, and Relative Risk					
(RR)					
Asthma ED visit or hospitalization	0.356		0.356		ß
rate ⁶⁴	0.550	-	0.550	-	Ρ
Acute cardiovascular attack rate	0.000	0.001	0.014	0.001	ß
32,34,35	0.009	0.001	<mark>0.014</mark>	0.001	р
New asthma onset incidence rate ⁶⁵	<mark>0.006</mark>	-	<mark>0.004</mark>	-	β
New CVD onset incidence rate ⁶⁵	<mark>0.015</mark>	-	<mark>0.012</mark>	-	β
Case fatality rate of asthma	0.015	_	0.015	_	ß
hospitalization or ED visit ⁶⁶	0.015		0.015		Ч
Case fatality rate of acute CVD	0.079	-	0.062	_	ß
attack ³²	0.079		0.002		۲

RR of all-cause mortality due to	1.06	0.01	1.06	0.01	24	
PM2.5 increase ³⁶	1.00	0.01	1.00	0.01	Ŷ	
RR of asthma hospitalization or						
emergency department visit by	<mark>1.023</mark>	<mark>0.004</mark>	1.023	<mark>0.004</mark>	γ	
PM2.5 <mark>7</mark>						
RR of new asthma onset due to	1.04	0.10	1.04	0.10		
PM2.5 increase ³	<mark>1.04</mark>	<mark>0.10</mark>	<mark>1.04</mark>	<u>0.10</u>	γ	
RR of new cardiovascular disease	1 1 1	0.05	1 11	0.05		
onset due to PM2.5 increase ⁶	<mark>1.11</mark>	<mark>0.05</mark>	1.11	0.05	γ	
RR of asthma emergency						
department visit or hospitalization	0.16	<mark>0.78</mark>	<mark>2.16</mark>	<mark>0.78</mark>		
rate association with CVD	2.16				γ	
comorbidity <mark>66</mark>						
RR of cardiovascular attack with	1.05			<mark>0.17</mark>		
prior history ⁶⁷	<mark>1.97</mark>	0.17	<u>1.97</u>		γ	
Utilities used to Calculate Quality-Adjusted Li	fe Years (Q	ALY)				
Annual utility of healthy resident in	1.00		1.00	-	0	
QALYs <mark>⁴²</mark>	1.00	-	1.00		р	
Annual utility decrement						
attributable to asthma ED visit or	<mark>-0.016</mark>	<mark>0.015</mark>	<mark>-0.016</mark>	<mark>0.015</mark>	β	
hospitalization in QALYs ³⁹						

Ann	al utility decrement					
attrib	outable to acute CVD attack in	<mark>-0.283</mark>	<mark>0.013</mark>	<mark>-0.283</mark>	<mark>0.013</mark>	β
QAL	.Ys ⁴⁸					
Utili	ty of chronic asthma ^{33,39,68}	<mark>0.808</mark>	<mark>0.211</mark>	<mark>0.747</mark>	<mark>0.214</mark>	β
Utili	ty of chronic cardiovascular	0.844	0.010	0.844	0.010	ß
disea	ise ⁴⁸	0.044	0.010	0.044	0.010	þ
Utili	ty of chronic cardiovascular	0.780	0.002	0 728	<mark>3.077</mark>	ß
disea	se and asthma ^{43,46,47}	0.789	0.002	0.720	<mark>E-06</mark>	þ

2

3 a: Probabilistic distribution of parameters. β denotes beta-distribution and γ stands for gamma

4 distribution.

5 b: Different cost values used per calendar year. Values in the table is the initial cost at year 2019.

1 Table 2. Incremental costs, incremental quality-adjusted life years, and incremental cost-effectiveness ratios for France and Italy for

- 2 current vehicle emission standards versus standards set in the United States. (Numbers are rounded to reflect the high degree of
- 3 uncertainty in the estimates.)

France				
Arm	QALY	Incremental	Cost (EUR)	Incremental Cost (EUR)
Maintain Current	10.62	<u></u>	<mark>49,000</mark>	
PM2.5 Emissions	(18.47, 20.21)	-	<mark>(25,000,</mark>	-
Standard	、 <i>, , ,</i>		<mark>90,000)</mark>	
Adopt U.S. PM2.5	19 67		<mark>48,000</mark>	
Emissions	(18.50, 20.24)	0.04	(24,000,	<mark>-1,000</mark>
Standard	(10.00, 20.21)		<mark>88,000)</mark>	

Italy					
QALY	Incremental QALY	Cost (EUR)	Incremental Cost		
27.29		<mark>39,000</mark>			
27.38	-	<mark>(6,000,</mark>	-		
(20110, 20110)		<mark>192,000)</mark>			
27.60		<mark>36,000</mark>			
(26, 20, 28, 45)	0.31	<mark>(5,000,</mark>	<mark>-3,000</mark>		
(20.39, 28.43)		<mark>175,000)</mark>			
	QALY 27.38 (26.15, 28.15) 27.69 (26.39, 28.45)	Italy Incremental QALY QALY 27.38 - (26.15, 28.15) - 27.69 0.31 (26.39, 28.45) 0.31	Italy Incremental Cost (EUR) QALY QALY Cost (EUR) QALY 39,000 39,000 27.38 - (6,000, (26.15, 28.15) - 192,000) 27.69 0.31 36,000 (26.39, 28.45) 175,000) 175,000)		

16 a: Quality of Life