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Abstract 6 

Introduction: The US has among the world’s strictest automobile emissions standards, but it 7 

is now loosening them. It is unclear where a nation should draw the line between the 8 

associated cost burden imposed by regulations and the broader societal benefits associated 9 

with having cleaner air. Our study examines the health benefits and cost-effectiveness of 10 

introducing stricter vehicle emissions standards in France and Italy. 11 

Methods: We used cost-effectiveness modelling to measure the incremental quality-12 

adjusted life years (QALYs) and cost (EUR) of adopting more stringent US vehicle emission 13 

standards for PM2.5 in France and Italy. 14 

Results: Adopting Obama-era US vehicle emissions standards would likely save money and 15 

lives for both the French and Italian populations. In France, adopting US emissions 16 

standards would save €1,000 and increase QALYs by 0.04 per capita. In Italy, the stricter 17 

standards would save €3,000 and increase QALYs by 0.31. The results remain robust in 18 

both the sensitivity analysis and probabilistic Monte Carlo simulation model. 19 

Conclusions: Adopting more stringent emissions standards in France and Italy would save 20 

money and lives. 21 

 22 

  23 
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Introduction 24 

Air pollution remains the primary environmental source of premature mortality in the 25 

European Union (EU), causing about 400,000 deaths per year 1. Transportation is responsible for 26 

roughly half of all airborne pollutants in the EU. Regulations on transportation have led to 27 

notable improvements in air quality in the region between 1990 and 2015 1. Nevertheless, the 28 

United States (US) is relaxing vehicle emissions standards. The impact of incremental increases 29 

or decreases in vehicle emissions standards on population health is roughly known, but less is 30 

known about the trade-offs associated with such changes on macro-economic well-being relative 31 

to health and health system costs. 32 

This paper explores the trade-off between more stringent vehicle emissions standards and 33 

regulatory costs. It does so by modeling the effect of applying more stringent standards to two 34 

case study countries. We use the relatively stringent Obama-era standard for particulate matter 35 

(PM) 2.5 as a reference because there are data on the macro-economic impacts of applying these 36 

regulations over time in the US. Likewise, a number of studies have been conducted on the 37 

relationship between vehicle emissions and air quality in France and Italy.  38 

PM2.5 refers to air particles that are 2.5 microns in diameter or less. Particles of this size 39 

can enter the circulatory system via the respiratory system, and thereby cause cardiovascular 40 

disease, lung cancer, and premature mortality 2–8. While deaths associated with PM2.5 have 41 

declined between 1990 and 2015 in the US and the EU overall, they continue to increase in Italy, 42 

Greece, and Malta 9. The estimated number of Years-of-Life-Lost (YLL) from PM2.5 in 2014 was 43 

852 per 100,000 inhabitants in the EU, 602 per 100,000 inhabitants in France, and 1024 per 44 

100,000 inhabitants in Italy 1. By contrast, YLLs in the US are small and limited mostly to the 45 

greater Los Angeles area.  46 
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Cars and trucks contribute to about half of the total PM2.5 in the EU 1. However, there is 47 

considerable variation in the relationship between automobile emissions and PM2.5 by geographic 48 

region, with some global cities being impacted to a greater extent by factories and power plants 49 

10.  50 

Current Federal regulations for vehicle emission standards set in the US by the 51 

Environmental Protection Agency 11 are stricter than the EU’s current Euro Six vehicle emission 52 

standards for all major pollutants, except for carbon dioxide 1. For PM2.5, the target annual 53 

exposure limit defined by the US EPA in 2012 is 12µg/m³ 12,13.  54 

The World Health Organization (WHO) recommends that PM2.5 not exceed 10µg/m³ 14, a 55 

stringent limit for which there are few case study nations. We chose the US as a comparator 56 

rather than the WHO recommendation because there are extant data and at 12µg/m³, it is very 57 

close to the WHO target. The 2008 EU legislation on ambient vehicle emissions sets vehicle 58 

emissions limits for the entire EU and requires member states to place restrictions on harmful air 59 

pollutants, including pollutants from on-road vehicles 15-18. Under this directive, the EU member 60 

states are required to limit population exposure to PM2.5 to an annual average of 25µg/m³ by 2015 61 

and 20µg/m³ by 2020 1, 15-18. In 2017, 6% to 7% of the EU urban population was exposed to 62 

PM2.5  concentrations exceeding the EU limit and about 67% were exposed to levels exceeding 63 

the WHO target 15.  64 

Italy and France’s PM2.5 emission exposure patterns are roughly similar to the range of 65 

emissions for other European countries. According to the EEA, the annual mean PM2.5 emission 66 

in 2015 was 13µg/m³ in France and 19µg/m³ in Italy 16, compared to an average of 13.9 µg/m³ for 67 

all EU-28 countries 16.  While France and Italy fall below the current EU limit of 25µg/m³, they 68 

still exceed both the US’s limit of 12 µg/m3 and the WHO’s Air Quality Guidelines of 10µg/m³ 69 
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13,14,17. Some eastern EU nations like Poland, Serbia, and Bulgaria have emissions averages that 70 

are much higher than Italy 16.  71 

In our analysis, we estimated health impacts in terms of premature deaths and years of life 72 

lost due to PM2.5 emission exposure 1,18. We also estimated economic costs associated with 73 

morbidity related to road traffic pollution in the EU 18,19. Using these inputs, we developed a cost-74 

effectiveness analysis to model the effect of applying the stricter US vehicle emissions standards 75 

and enforcement to France and Italy. 76 

 77 

Methods 78 

Using a Markov model, we simulated relevant health and economic consequences of 79 

reduced PM2.5 emissions associated with two scenarios in France and Italy: (1) “Keep the 80 

standard as is;” and (2) “Adopt and enforce US emissions standards.” We estimated quality-81 

adjusted life years (QALYs), health system costs, regulatory costs, vehicle upgrade costs, and 82 

fuel savings 13. All parameters were derived from the existing literature and are summarized in 83 

Table 1.  84 

We ran our model over the course of the lifetime of our standard cohort and discounted 85 

future QALYs and costs at a discount rate of 3% 20. Final estimates of incremental costs per 86 

QALY were made in constant 2018 €. We conducted multiple one-way sensitivity analyses to 87 

quantify the robustness of our estimates against broad changes in the core parameters and 88 

assumptions of the model. Additionally, we performed a Monte Carlo simulation with 10,000 89 

random samples to capture uncertainty in our model outcomes across all variables. We built our 90 

model in TreeAge Pro 2016 software 21.  91 

 92 

PM2.5 Emissions Regulations: US vs. France and Italy 93 



5 

 

In our model, we explored the potential impact of stricter regulations in two European 94 

countries on health and costs. We limited the regulations to only light-duty vehicles, which are 95 

defined as passenger cars for everyday use 22,23 and account for more than 80% of registered 96 

vehicles in France and Italy 24. We omitted light- and heavy-duty trucks from our analysis, 97 

including commercial trucks, because there is limited data on upgrading costs and fuel savings. 98 

Italy and France have a similar proportion of heavy vehicles on the road, extensive rail networks, 99 

and while Italy imports a good deal of energy from France, 80% of this power comes from 100 

nuclear power generation and hydropower 25,26. This allows for a natural control between the two 101 

case study nations. 102 

 103 

Demographic Data 104 

We measured the impact of stricter vehicle emissions standards on all residents of France 105 

and all residents of Italy as separate arms of the model. In our Markov model, the average age, 106 

population size, and age-specific mortality rates for each country were retrieved from Eurostat 107 

statistics 27. We also applied different regulatory standards in France, Italy, and the US to a 108 

uniform, hypothetical cohort. This allows us to provide estimates of the impacts of regulatory 109 

standards on health that are independent of socio-demographic differences between the three 110 

nations. 111 

 112 

Cost-Effectiveness Model 113 

Our Markov decision-analytic model had two arms: “Keep the standard as is” and “Adopt 114 

US emissions standards.” Our hypothetical regulatory changes could reduce the risk of lung 115 

cancer, stroke, asthma, and overall mortality 18,19. However, to ensure that our numbers are 116 

conservative, we focused on two major health effects of ambient PM2.5: asthma and 117 
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cardiovascular disease (CVD). Our model, therefore, assumes five health states: perfect health, 118 

chronic asthma, chronic CVD, comorbid asthma and CVD, and death. Excluding other pollutants 119 

also helps ensure that numbers are conservative on the benefits side of the cost-effectiveness 120 

analysis.  121 

Our Markov model simulates the impact of reduced PM2.5 levels on the risk of developing 122 

new asthma, chronic CVD, and comorbid asthma, and CVD. We also modeled the risk of acute 123 

exacerbations for people living with chronic asthma and the risk of acute CVD events such as 124 

stroke or myocardial infarction among people living with chronic CVD. We ran the model from 125 

2018 until 2050 to evaluate the impact of the policy over the lifetime of each standardized cohort.  126 

We then conducted a one-way sensitivity analysis using the confidence intervals reported 127 

in the literature to see how changing a given parameter would impact the incremental cost-128 

effectiveness ratio (ICER) 28. Finally, we developed a Monte Carlo simulation for probabilistic 129 

sensitivity analysis using a normal probability distribution based on the reported standard errors 130 

from the literature 28. We ran the simulation with a willingness-to-pay (WTP) threshold of 131 

€46,000, referring to the European survey on willingness-to-pay for improved air quality in an 132 

economic study 29 to assess the robustness of our analysis. 133 

 134 

Probabilities and Rates 135 

Model parameters for the incidence rates for asthma, CVD, exacerbations, and relapses, 136 

was derived from the literature. The life tables and demographics for France and Italy were each 137 

obtained from their national statistics bureaus 30,31. Where a country-specific value for a given 138 

parameter was not available, we used the reported value for a demographically similar country. 139 

Where co-morbid states are present, we adjusted health states to reflect independent probabilities 140 
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32–35. We averaged the reported values from as many meta-analyses and nationwide studies as 141 

possible to improve the accuracy and generalizability of our findings. 142 

The “Adopt US standards” scenario evaluates the economic costs and health benefits of 143 

reducing PM2.5 in France and Italy to those currently seen in the US. We applied the drops in 144 

PM2.5 levels to the relevant relative risks based on data from the literature 3,6,7,36. We then 145 

modified the baseline risk of health states in the control arm, “Keep the standard as is,” to inform 146 

the corresponding probabilities in the intervention arm. For a complete list of parameters, see 147 

Table 1. 148 

 149 

Costs 150 

We included health care-related costs, the costs of implementing new test facilities, and 151 

fuel savings from stricter PM2.5 emissions standards as direct costs 11. We quantified indirect 152 

costs through health-related productivity gains associated with reduced PM2.5 levels 3,6,7,35. All 153 

the costs associated with this policy change were taken from the literature.  154 

To determine the direct costs of introducing US standards to both France and Italy, we 155 

used data from the US EPA’s 2014 Regulatory Impact Analysis 11. Costs included a one-time 156 

implementation cost for PM2.5 regulation test facilities, the unit cost of upgrading vehicles with 157 

additional hardware, the indirect cost of additional labor, and the annual fuel savings after the 158 

upgrade for gasoline vehicles 11. To compute the total cost of vehicle upgrades, we multiplied the 159 

unit costs per vehicle by the annual number of light-duty vehicles sold in each country. For each 160 

health state, we included on-going costs of chronic asthma or CVD management 33,37–40, costs of 161 

asthma exacerbation 41, and costs of acute CVD events 37,40.  162 

 163 
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Utilities 164 

Health outcomes were measured in terms of QALYs, a measure of remaining life 165 

expectancy, adjusted to reflect the average state of health of a cohort 42. The health state utility 166 

value for chronic asthma was derived from literature 43,44. We multiplied the distribution of 167 

asthma health states, defined by the Global Initiative for Asthma 45, by their corresponding utility 168 

values 46. For CVD, we compiled the health utility values from the literature based on the 169 

EuroQol-5 Dimension (EQ-5D) scale 47,48. All relevant asthma and CVD events were assigned a 170 

disutility value based on literature, found in Table 1. 171 

To measure the impact of an ambient PM2.5 decrease on quality of life, we used the 172 

reported QALY gain/loss from the literature, and assumed a linear association between PM2.5 and 173 

QALYs.  174 

 175 

Table 1. List of parameters used in the Markov Model 176 

 177 

[Insert Table 1 here.] 178 

 179 

Results 180 

In France, the added direct and indirect costs of not adopting and enforcing the US 181 

regulations (keeping the status quo) amounted to €49,000 (95% CI €25,000, €90,000) while 182 

adopting the US PM2.5 emission standards would cost €48,000 (95% CI €24,000, €88,000). The 183 

number of QALYs associated with the status quo scenario was 19.63 (95% CI 18.47, 20.21), 184 

while the number of QALYs associated with adopting US regulations was 19.67 (95% CI 18.50, 185 

20.24). In Italy, the cost associated with not adopting stricter PM2.5 regulations was €39,000 186 

(95% CI €6,000, €192,000), while adopting the standards was associated with a cost of €36,000 187 
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(95% CI €5,000, €175,000). The corresponding QALYs for the status quo and new emission 188 

regulations were 27.38 (95% CI 26.15, 28.15) and 27.69 (95% CI 26.39, 28.45) respectively. 189 

With incremental costs of -€1,000 for France and -€3,000 for Italy, as well as incremental 190 

QALYs of 0.04 for France and 0.31 for Italy, adopting US emission standards saves costs and 191 

lives for both French and Italian populations. 192 

 193 

Table 2. Incremental costs, incremental quality-adjusted life years, and incremental cost-194 

effectiveness ratios for France and Italy for current vehicle emissions standards versus standards 195 

set in the US. 196 

 197 

 [Insert Table 2 here] 198 

 199 

The one-way sensitivity analysis indicated that the results of our model were robust to 200 

changes to the parameter values, such as changes in the relative risk of CVD onset, ongoing cost 201 

of chronic asthma, new CVD onset incidence rate, etc. (the full list of model parameters 202 

subjected to the sensitivity analysis can be found in Appendix 1, Figure S1). The parameter that 203 

affected our model the most was variability in the relative risk of asthma incidence due to an 204 

increase in PM2.5 for France and ongoing cost of chronic CVD for Italy (Appendix 1, Figure S1). 205 

 206 

 [Insert Figure 1 Here.] 207 

 208 

Figure 1. Incremental Cost-Effectiveness Scatter Plot with 95% Credibility Interval (defined as 209 

inner space of the grey eclipse) falling within and outside of the willingness-to-pay (WTP) 210 

threshold of €46,000 France and Italy.  211 
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 212 

From the probabilistic Monte Carlo simulation (Figure 1), 93.8% of randomly-generated 213 

samples for France and 87.4% of samples from Italy were both cost- and life-saving for adopting 214 

US PM2.5 emission standards compared to no change in air pollution policies.  An additional 215 

0.7% of French samples and 10.1% of Italian samples fell within a WTP of €46,000. Despite 216 

excluding important benefits associated with regulatory changes, less than six percent of the 217 

simulations for both France and Italy fell outside of the WTP threshold. 218 

From the acceptability curve, with a WTP of €46,000, the intervention has 98.7% 219 

acceptability for France and 96.0% acceptability for Italy. Within the confidence interval of 220 

€27,000 - €110,000, the intervention maintained higher than 95% acceptability for both countries. 221 

(Appendix 1, Figure S2) 222 

 223 

Discussion 224 

We set out to illustrate the changes in societal costs and health associated with changes in 225 

PM2.5 regulations. We used two nations as case studies in order to illustrate the tradeoffs 226 

associated with incremental regulatory changes. Cost-saving preventive health interventions are 227 

very rare, and should be implemented so long as there are no overriding ethical concerns 228 

associated with doing so 20,49. We find that improving vehicle emissions standards and 229 

enforcement is one of those rare policies that could save both money and lives. The EU has not 230 

kept pace with the US with respect to vehicle emissions standards set by the US EPA. 231 

Enforcement of violations is also weak in many EU member states. As a result, the EEA reports 232 

that about 400,000 deaths occur each year as a result of long-term exposure to excessive PM2.5 15. 233 

This human toll also comes with an economic toll for the EU that hits health systems particularly 234 

hard. This is striking for a block of nations that also offers near universal care to its occupants. 235 
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Full quantification of the economic and health toll association with regional changes in 236 

regulation would be a massive undertaking given the large national variations in emissions, 237 

pricing of health goods, and other model inputs, and mean values for EU are of little use. Given 238 

our finding that both nations would realize savings, it is likely that most EU nations would realize 239 

similar gains. However, countries with tough regulations might experience increases in costs 240 

without meaningful gains in health. Likewise, our predictions are not valid for countries with 241 

weak regulations that might enact more radical changes that could produce unforeseen and 242 

unintended macroeconomic consequences.  243 

Our study also serves as a warning for US policy. Currently, the US is considering 244 

relaxing environmental protections, and one EPA scientific advisor has indicated that the air in 245 

the US is “too clean” to breathe for optimal health 50. Relaxing standards, even to a small degree, 246 

would likely lead to increases in deaths, disability, and costs. This is likely to be a bigger problem 247 

in the US than in Europe not only because driving is more prevalent, but also because healthcare 248 

costs are roughly twice those of France or Italy and growing much more rapidly over time 51–53. A 249 

recent study found that PM2.5 concentrations are highly predictive of Covid-19 deaths in the 250 

United States 54,55.  251 

Our study has a number of limitations. First, we showed two case studies rather than 252 

providing mean impacts in the EU. Some nations in the EU have much higher standards than 253 

France or Italy, while others have much lower standards. Like the EU, US states vary with 254 

respect to enforcement of EPA vehicle emissions standards. However, because the US 255 

automobile market is somewhat monolithic, automobile emissions and fuel efficiency standards 256 

in the US are driven more by the state with the toughest regulations than by EPA standards.  257 

Another limitation is that our key model inputs—pollution-associated morbidity and 258 

mortality—are not derived from randomized trials in humans (for ethical reasons). Rather, they 259 
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are derived from observational and quasi-experimental studies of humans backed by experimental 260 

animal models. The health effects of pollution could be better or worse than those we present 261 

here. We account for error in estimates of these and other model inputs by using a broad 262 

sensitivity analysis and excluding potentially important pollutants from our estimates. 263 

 264 

Conclusions 265 

Most medical interventions cost well over $100,000 per QALY gained 28, however 266 

broader social policies such as education interventions, can save both money and lives 56–59. We 267 

show that titrating regulatory controls to optimize health could be added to the armament of 268 

policies, including vaccines and education interventions 56–59, that improve health. 269 

  270 
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Table 1. List of parameters used in the Markov Model 1 

Description France Italy   

    Base Value 

Standa

rd 

Error 

Base Value 

Standa

rd 

Error 

Probabili

stic 

Distribut

iona 

General parameters      

 Average age of target population 27 41.4 - 45.9 - - 

 Total number of target population 27 66989083 - 60589445 - - 

 

Chronic asthma prevalence 33 

(2010) 

0.06 - 0.04 - - 

 Chronic CVD prevalence 32,34,35 0.054 - 0.045 - - 

 Annual discounting rate 20 0.03 - 0.03 - - 

 Ambient PM2.5 base level (μg/m3)  13.00 - 19.00 - - 

 

Ambient PM2.5 benchmark level 

(μg/m3) 60 

7.65  7.65   

 

Number of gasoline passenger cars 

sold in year 2017 61,62 

777645 - 599752 - - 

 

Number of diesel passenger cars 

sold in year 2017 61,62 

1089403 - 1061004 - - 

 

Total passenger vehicles on road 

61,62 

32326000 - 37080753 - - 

Costs (2018 Euro)      



2 

 

 

 

Cost of acute asthma ED visit or 

hospitalization 41,63 

399 - 1,225 - γ 

 On-going cost of chronic asthma  1,230 6,076 1,407 118 γ 

 Cost of acute CVD attack 37,40,63 19,279 - 23,053 20,929 γ 

 

On-going cost of chronic CVD 

37,40,63 

9,358 - 5,282 8,539 γ 

 One-time facility set-up cost 11 1,077,089 - 8,616,711 - γ 

 

Unit cost per vehicle for new 

vehicle hardware 11,b 

70.77 - 47.75 - γ 

 

Annual fuel savings per vehicleb 

(Gasoline vehicles only) 11 

1.51 - 1.30 - γ 

Probabilities, Rates, and Relative Risk 

(RR) 

     

 

Asthma ED visit or hospitalization 

rate 64 

0.356 - 0.356 - β 

 

Acute cardiovascular attack rate 

32,34,35 

0.009 0.001 0.014 0.001 β 

 New asthma onset incidence rate 65 0.006 - 0.004 - β 

 New CVD onset incidence rate 65 0.015 - 0.012 - β 

 

Case fatality rate of asthma 

hospitalization or ED visit 66 

0.015 - 0.015 - β 

 

Case fatality rate of acute CVD 

attack 32 

0.079 - 0.062 - β 



3 

 

 

 

RR of all-cause mortality due to 

PM2.5 increase 36 

1.06 0.01 1.06 0.01 γ 

 

RR of asthma hospitalization or 

emergency department visit by 

PM2.5 7 

1.023 0.004 1.023 0.004 γ 

 

RR of new asthma onset due to 

PM2.5 increase 3 

1.04 0.10 1.04 0.10 γ 

 

RR of new cardiovascular disease 

onset due to PM2.5 increase 6 

1.11 0.05 1.11 0.05 γ 

 

RR of asthma emergency 

department visit or hospitalization 

rate association with CVD 

comorbidity 66 

2.16 0.78 2.16 0.78 γ 

 

RR of cardiovascular attack with 

prior history 67 

1.97 0.17 1.97 0.17 γ 

Utilities used to Calculate Quality-Adjusted Life Years (QALY) 

 

Annual utility of healthy resident in 

QALYs 42 

1.00 - 1.00 - β 

 

Annual utility decrement 

attributable to asthma ED visit or 

hospitalization in QALYs 39 

-0.016 0.015 -0.016 0.015 β 



4 

 

 

 

Annual utility decrement 

attributable to acute CVD attack in 

QALYs 48 

-0.283 0.013 -0.283 0.013 β 

 Utility of chronic asthma 33,39,68 0.808 0.211 0.747 0.214 β 

 

Utility of chronic cardiovascular 

disease 48 

0.844 0.010 0.844 0.010 β 

  

Utility of chronic cardiovascular 

disease and asthma 43,46,47 

0.789 0.002 0.728 

3.077

E-06 

β 

 2 

a: Probabilistic distribution of parameters. β denotes beta-distribution and γ stands for gamma 3 

distribution. 4 

b: Different cost values used per calendar year. Values in the table is the initial cost at year 2019. 5 



1 

 

 

Table 2. Incremental costs, incremental quality-adjusted life years, and incremental cost-effectiveness ratios for France and Italy for 1 

current vehicle emission standards versus standards set in the United States. (Numbers are rounded to reflect the high degree of 2 

uncertainty in the estimates.) 3 

France 

Arm QALY 

Incremental 

QALY 

Cost (EUR) 

Incremental 

Cost (EUR) 

Maintain Current 

PM2.5 Emissions 

Standard 

19.63 

(18.47, 20.21) 

- 

49,000 

(25,000, 

90,000) 

- 

Adopt U.S. PM2.5 

Emissions 

Standard 

19.67 

(18.50, 20.24) 

0.04 

48,000 

(24,000, 

88,000) 

-1,000 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 



2 

 

 

 15 

Italy 

Arm QALY 

Incremental 

QALY 

Cost (EUR) 

Incremental 

Cost 

Maintain Current 

PM2.5 Emissions 

Standard 

27.38 

(26.15, 28.15) 

- 

39,000 

(6,000, 

192,000) 

- 

Adopt U.S. PM2.5 

Emissions 

Standard 

27.69 

(26.39, 28.45) 

0.31 

36,000 

(5,000, 

175,000) 

-3,000 

 a: Quality of Life 16 

 17 

 18 




