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Abstract: Background: We conducted this systematic review and meta-analysis to address the crucial
public health issue of the suspected association between air pollution exposure during pregnancy
and the risk of infant mortality. Methods: We searched on MEDLINE ® databases among articles
published until February, 2019 for case-control, cohort, and ecological studies assessing the association
between maternal exposure to Nitrogen Dioxide (NO;) or Particular matter (PM) and the risk of infant
mortality including infant, neonatal, and post-neonatal mortality for all-and specific-causes as well.
Study-specific risk estimates were pooled according to random-effect and fixed-effect models. Results:
Twenty-four articles were included in the systematic review and 14 of the studies were taken into
account in the meta-analysis. We conducted the meta-analysis for six combinations of air pollutants
and infant death when at least four studies were available for the same combination. Our systematic
review has revealed that the majority of studies concluded that death risk increased with increased
exposure to air pollution including PM;y, PM; 5, and NO,. Our meta-analysis confirms that the risk of
post-neonatal mortality all-causes for short-term exposure to PM; increased significantly (pooled-OR
=1.013, 95% CI (1.002, 1.025). When focusing on respiratory-causes, the risk of post-neonatal death
related to long-term exposure to PMjg reached a pooled-OR = 1.134, 95% CI (1.011, 1.271). Regarding
Sudden Infant Death Syndrome (SIDS), the risk also increased significantly: pooled-OR = 1.045,
95% CI (1.01, 1.08) per 10 pg/m?), but no specific gestational windows of exposure were identified.
Conclusion: In spite of a few number of epidemiological studies selected in the present literature
review, our finding is in favor of a significant increase of infant death with the increase of air pollution
exposure during either the pregnancy period or the first year of a newborn’s life. Our findings have
to be interpreted with caution due to weaknesses that could affect the strength of the associations and
then the formulation of accurate conclusions. Future studies are called to overcome these limitations;
in particular, (i) the definition of infant adverse outcome, (ii) exposure assessment, and (iii) critical
windows of exposure, which could affect the strength of association.

Keywords: systematic review; meta-analysis; infant mortality; exposure; air pollution; PM; NO,

1. Introduction

Despite considerable improvement in the prevention, management, and regulation of air pollution,
it remains a leading environmental health issue worldwide and has been identified as a health priority
on the sustainable development agenda [1]. Having clean air to breathe is a fundamental requirement
for human health and well-being. While the increased risk to health of air pollution is relatively low in
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comparison with other risk factors, the total number of people affected is significant. According to
the Organisation for Economic Cooperation and Development, air pollution is known to be the main
environmental cause of premature death (2014) [2]. Environmental policies aiming to tackle the air
pollution issue have proved to be effective, having health benefits. However, using a recent air quality
model, the World Health Organisation (WHO) has calculated that 92% of the population lives in places
where air quality levels exceed WHO limits [3]. Certain groups within the population are known to be
more vulnerable to the health effects of air pollution exposure, and one such group is newborns and
infants because of their overall physiological immaturity [4,5].

While the findings of epidemiological studies investigating risk factors are essential in public
health, quantitative Health Impact Assessments (HIAs) are key to public policy regulatory and
decision-making processes because they provide valuable information on future health concerns
related to any potential intervention. HIA methodology calls upon a diverse set of data sources,
including the dose-response function which indicates the expected change in a given outcome per unit
change of pollutant deriving from epidemiological studies that assess the relative risk associated with
the observed or modelled exposure [6]. This relative risk may come from meta-analyses providing
pooled estimates. The benefits of a meta-analysis are that it offers relative risk estimation within a
specific vulnerable population as well as a better fit with the geographical context of exposure.

In previous years, there has been an increase in the number of studies investigating links between
infant mortality and air pollution. The potential impact of air pollution exposures on infant mortality
has already been reviewed in 2004; that study suggested a stronger association between particulate
air pollution and some causes of infant death [7]. Since then, several recent studies have been
published [8-10]. In this context, an updated literature synthesis might tell us whether the current
epidemiological evidence favours an association between infant mortality and air pollution, with a
view to suggesting future directions for research.

2. Material and Methods

2.1. Search Strategy

A systematic literature search was conducted using the PubMed platform which provides access to
the MEDLINE® database and Academic Search Complete databases, among articles published up until
February, 2019. The search strategy followed the PRISMA (Preferred Reporting Items for Systematic
reviews and Meta-Analyses) guidelines [11] and was performed with the following keywords found in
articles’ titles and/or abstracts:

“Air pollution” OR “Air pollutant” OR “Air Pollutants” or “outdoor Pollution” OR “Particular
matter” OR “PM25” OR “PM10” OR “Black Emission” OR “Black Carbon” OR “Nitrogen Dioxide”
AND “Infant Mortality” OR “Infant Mortalities” OR “Infant Death” OR “Child Mortality” OR “Child
Mortalities” OR “Child Death” OR “Child Deaths” OR “Under-one Mortality” OR “Under-one
Mortalities” OR “Under-one Death” OR “Under-one Deaths” OR “Neonatal Mortality” OR “Neonatal
Mortalities” OR “Neonatal Death” OR “Neonatal Deaths”.

2.2. Selection of Studies

In line with PRISMA recommendations, Figure 1 summarizes the different stages of the
selection process.
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Figure 1. Flow diagram for the inclusion and exclusion of studies.

In the first stage, the inclusion criteria were peer-reviewed papers written in English and articles
published after 2000 without restriction on geographical location and human studies. We restricted
our systematic review on the children aged under 1 year. Papers presenting non-original studies (e.g.,
comments, systematic reviews, meta-analysis, reports, case reports, animal and mechanistic studies,
and biological experiments) were ultimately excluded. Using these criteria, 173 of the 280 articles
published were selected for inclusion.
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In the second stage, titles and abstracts of the 173 articles were screened. A total of 100 studies
were then excluded when they:

(i)  Investigated adult mortality, other pregnancy, birth, infant, or child outcomes

(ii) Considered indoor air pollution, smoking exposure, or were traffic-related (industrial
plants, all types of wastes, cooking and biomass fuels consumption, ambient conditions,
other environmental exposures)

(iii) Dealt with other outdoor air pollutants measured (not including PM; 5, PMy, or NO,)

In the third stage, full manuscripts of the remaining 73 articles (of the 173 initially selected) were
read thoroughly by two independent experts; 24 studies were retained if:

(i)  Studies investigated the death among children aged between 0 and 1 years old.

(ii)  Studies considered only the air exposure traffic related.

(iii) The outdoor air pollutants measured included at least PMj, 5, PM;g, or NO;, the three pollutants
of interest.

(iv) Studies were original studies quantifying the relationship between infant mortality and outdoor
air exposure related traffic (not non-original studies, opinion articles, comments, critical, narrative,
and systematic reviews and meta-analysis, Global Burden of Disease studies, HIAs, environmental
health indicators, risk assessments)

Ultimately, a total of 24 articles met the inclusion criteria for the systematic literature review.
In order to perform a meta-analysis, studies were excluded where there was:

(i)  no measure of association

(i) a measure of exposure not expressed as a pollutant concentration (for instance:
exposed/not exposed)

(iii) when either outcome (neonatal mortality) or exposure (NOx in the summer season) was not
pertinent for the meta-analysis

Also, meta-analysis was not performed where measures of association between a given outcome
and a pollutant were available for at least four studies.

Hence, of the 24 articles included in this systematic literature review, 10 did not meet the inclusion
criteria for the meta-analysis. In the end, 14 articles were included in the meta-analysis.

2.3. Data Extraction

For each study, we extracted and reported the following information in several tables:

(i)  General information: first author’s name, date of study, and country of origin,

(ii) Main study characteristics: study design, spatial unit, statistical methods, population definition,
main findings (related to infant outcomes and PM;,, PM; 5, and NO, only),

(iij) Participant characteristics: information on confounders and exposure measures,

(iv) Outcome measures: outcomes classification, definition, and source,

(v) Measures of association were extracted including Hazard Ratios (HRs), Odds Ratios (ORs),
Relative Risks (RRs), and other metrics measuring the strength of association between mortality
and exposure to different pollutants including PM1p, PM; 5, and NO,. Where several measures of
association were available, we reported those taken from the fully adjusted models.

2.4. Meta-Analysis

The pooled estimate between exposure to air pollution and mortality was computed only where
at least four studies were available. All risk estimates were expressed as unit risks corresponding to an
increase of 10 pg/m3. The combined effect was obtained from a fixed or random model based on the
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Cochran Q-test, the I-square statistic, and the associated p-value. Where the Cochran Q-test revealed
significant heterogeneity between studies, a random model was implemented; conversely, a fixed
model was applied where the Q-test was not significant. The I-square (I?) indicator quantifies the
level of heterogeneity between studies. Where the value varies between 25% and 50%, 50% and 75%,
and >75%, this corresponds to a low, medium, and high level of heterogeneity, respectively. Forest
plots were created to represent the combined risk estimates. All statistical analyses was performed
using STATA 11.

2.4.1. Publication Bias

Funnel plots, which present effect sizes plotted against their standard errors, were used to assess
for potential publication bias. The asymmetry of the funnel plot is an indication of publication bias
which can be confirmed by applying the begg’s rank test for small-study effects. This test examines the
correlation between the effect size and their corresponding sampling variances, with a strong value of
correlation meaning a publication bias.

2.4.2. Sensitivity Analysis

In addition, we also evaluated the influence of each individual study on the overall meta-analysis
estimate; we implemented several meta-analyses in which the meta-risk is re-estimated, omitting
each study in turn (we used the metaninf function in STATA software (StataCorp, College Station,
TX, USA). While there is no formal statistical test to prove that such a study should, or should not,
be removed from the analysis, we followed two general guidelines to assess the influence of a given
study. We analyzed if the point estimate of this omitted analysis lies outside the confidence interval of
the combined analysis and second, if the omitted study excessively influenced the significance of the
combined risk.

3. Results
3.1. Main Characteristics of the Studies

3.1.1. General Description

Table 1 provides the characteristics of all the studies reviewed by year of publication, type of
study design, infant mortality outcome, exposure assessment, and major findings and conclusions.

Since 2000, 24 studies (covering more than 400,000 infant deaths) had been published to estimate
the association between outcomes and exposure to three ambient pollutants: PM; 5, PM;g, and NO;.
Of these, infant mortality all causes, post-neonatal infant mortality all causes, respiratory causes of
infant and post-neonatal mortality, and sudden infant death syndrome were investigated (Table 1).
Only 14 of the studies were eligible for meta-analyses.

3.1.2. Study Design and Location

Most of the studies were conducted in the United-States (in both the north and south) [8,10,12-21].
There were also 6 studies conducted in Europe and the UK [9,22-25], 7 studies conducted in Asia [26-31],
and a single study conducted in Africa [32]. Our systematic review is grouped by study design: a majority
are ecological studies [9,12,19,20,23,24,31]; others are case crossover studies [8,18,22,25,26,28-30],
case-control studies [15-17], cohort, and cross sectional studies [10,13,14,27,32].
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Table 1. Main characteristics of the selected studies, ordered by year of publication.

6 of 24

Auteurs i:}:‘:{igfs‘gn’ Period Population Size Outcomes Pollutants Statistical Methods Confounders/Stratification Main Findings
Infant, neonatal, and Confounders: mother’s smoking, education,
s t-n/eona tal . PMiyo. SO, SO, @) marital status, and race; month of birth; and
Lipfert etal, 2000  Cross-sectional study. . P . 10,972,904 - . county average heating degree days L .
13,041 infant deaths. mortality: all causes CO, and non-sulfate Logistic regression A No significant association.
[21] 1990. USA. and respiratory causes; DM Stratified by age (neonatal and post-neonatal),
SIDS P y ’ 10 by birth weight (normal and low [<2500g]),
and by specific causes within these categories.
Time series Post-neonatal Significant association between short
Ha et al., 2003 1995-1999 éeoul 1045 post-neonatal mortality: all causes PM;, SO,, CO, O3, Generalized additive Confounders: seasonality, temperature, term exposure to PMj( and risk of
[31] South Korlea ! deaths. and rest};‘a tory causes and NO, Poisson models relative humidity, day of week. post-neonates and specially with that
: P v of respiratory mortality.
Romieu et al., 2004 fgags;_ _zcggiscggiza d 628 post-neonatal fr?;:;:l?tol?a;ﬁlcauses PM Conditional logistic Confounders: Temperature and season, No significant association had been
. eaths. 8 regression tratifie socioeconomic index. revealed.
18 Juarez, Méxmo death and resp};‘atory causes b gressi Stratified by soc icind led
Time-series Confounders: Adjustments for season alone or Significant association between
Dales et al., 2004 1984-1999, 12 1556 SIDS. SIDS SO,, CO, O3, PMy, Randox?n—effect the c'ombmatllo'n of daily mean tlemperature', short-term exposure to NO, and
[19] X . PM; 5, and NO, regression model relative humidity, and changes in barometric .
Canadian cities. increased rates of SIDS.
pressure.
Lin et al., 2004 Time series PM;, SO,, CO, O Generalized additive Confounders: long- and short- term trend Significant association between
i c 6696 neonatal deaths. ~ Neonatal mortality 10- 22, - s Poisson regression P Ong” . ! short-term exposure to PM;o
[20] 1998-2000, Sao Paulo. and NO, temperature, humidity, holidays.
models exposure and neonatal deaths.
Klonoff-Cohenetal.,, Case control. Conditional logistic E;)sz:}l::]ie;?erifezatlilvi?;\ofl;ﬁiz{}? &lelivet;n Significant association between
2005 1988-1992, Southern 169 SIDS cases. SIDS CO and NO2 . g . . . . ght, increased risk of SIDS and both short-
N | regression infant medical conditions at birth, and
[17] California, US. . and long-term exposure to NO,.
maternal education.
Case-Crossover. A positive but non-significant
Yang et al., 2006 1994-2000, Taipei, 471 iost-neonatal I’ost—nﬁonatal PMjy, SO,, CO, O3, Condm‘onal logistic Confounders: temperature; humidity. assoc1§tlon between post-neonatal ]
[29] Taiwan deaths. mortality and NO, regression mortality and short term exposure o
: PM;p and NO,.
. Confounders: maternal education, marital A statically significant increased risk
Darrow et al., 2006 E;tgh_ggg; r{IS ?:?agff;n?;);gral :)osrt:lfonsrel to PMuo, PMs =, and CO Logistic generalized status, age, primiparity, maternal smoking, of post-neonatal respiratory mortality
[14] counties ’ deaths P Y res irattg] causes 10, V25, estimating equations  county-level poverty indicators, birth region, ~ with long-term exposure to PMo and
’ ’ P Ty birth month, and birth year. PMy5.
A significant association between
long-term exposure to NO, and
Case control. Post-neonatal Confounders: gender; maternal age; race; increased risk of post-neonatal
Ritz et al., 2006 1989-2000, South 13,146 post-neonatal mortality: all causes PM;, CO, O3, and Conditional logistic education, parental care, season, birth county;  mortality.
15 Coast Air Basin of infants. and due to respirato: NO, regression arit A significant association between
P Ty g parity g
California, US. causes, SIDS Stratify by birth weight; gestational age. both short- and long-term exposure
to PMj and all post-neonatal
mortality.
Post-neonatal A significant association between
Woodruff et al., Case control. 788 post-neonatal mortality: all causes Conditional logistic Confounders: maternal race, marital status, osfneona tal mortality from
2006 1999-2000, California, dea tI;s and respiratory causes; PMj 5 regression s parity, maternal education, and maternal age. Ees iratory causes an(;ylon —term
[16] Us. : SIDS; external causes 8 Stratified by birth weight and gestational age. P Y 8

of death

exposure to PMy 5.
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Auteurs i:}:‘:{i(ﬂes‘gn’ Period Population Size Outcomes Pollutants Statistical Methods Confounders/Stratification Main Findings
Case-crossover. Positive but no significant association
Tsai et al., 2006 1994-2000, Kaohsiung, 207 post-neonatal Post-neonatal PM;y, SO,, CO, O3, Conditional logistic Confounders: Temperature: humidit between the risk of post-neonatal
[30] Taiwan. (Industrial deaths. mortality and NO, regression : P ! ¥ deaths with daily concentration for
city). PM;( and NO,.
Infant Mortality, Confounders: influenza A, respirator No significant association between
Hajat et al., 2007 Time-series. 22,288 total Infant neonatal, and PMjy, SO,, CO, O3, Poisson generalized (; Otial veiri a tivei vt ]‘I:l esrz tur N }z,umi dit short-term exposure of PM;y and
[9] 1990-2000, UK. deaths. post-neonatal NO,, and NO linear models; syncy! S activity, temperature, ¥ NO; and all infant, neonatal, and
. secular trends, seasonal fluctuations. .
mortality post-neonatal mortality.
No significant association between
Case crossover and Conditional Logistic PM; exposure and post-neonatal
Son et al., 2008 Time-series analysis 766 post-neonatal Post-neonatal PM;, SO,, CO, O3, Regression; Confounders: temperature; humidity; air mortality.
[28] 1993-2003, Seoul, deaths. mortality and NO» Generalized additive pressure. Positive associations between NO,
Korea. models exposure and post-neonatal mortality,
but not statistically significant.
Woodruff et al,, Birth cohort study. Post-ne':onatal 'LOngtIC regression Confounders:'maternal factor's (racef marital A &gmﬁcan? statically increase of risk
2008 1999-2002. 96 US 6639 post-neonatal mortality: all causes PM;g, PM; 5, SO,, CO, incorporating status, education, age, and prim-parity), of only respiratory-related
113] counties ’ deaths. and respiratory causes; and O3 generalized estimating  percentage of county population below post-neonatal mortality for a 10
- : SIDS equations poverty, region, birth month, birth year. ug/m3 increase in PMyg.
. Case-crossover. Confounders: weather conditions and day of ~ The risk of post-neonatal mortality
Carbajal-Arroyoetal., . Post-neonatal - - .
1997-2005. Mexico 12,079 post-neonatal . Conditional Logistic the week. all cause and respiratory cause
2011 . R mortality: all causes PM;jy and O3 . [P . . P . ;
City Metropolitan deaths. s Regression Effect modification by socioeconomic status significantly increase with short-term
[8] and respiratory causes
Area. and sex. exposure to PMyg.
Infant mortality, early Statically significant increased risk of
and late neonatal Confounders: temperature. - . . .
Scheers et al., 2011 Case-crossover. mortality; Conditional Logistic Stratified by: age groups, maturity (preterm infant mortality for increased daily
v 1998-2006, Flanders, 2382 infant deaths. 4 PM;g . . e ; mean PMy.
[25] . post-neonatal; Regression versus term birth), Socio-economic status, and L .
Belgium. Stronger and significant association
All causes and by cause of death. , .
found for late neonates’ mortality.
causes
Cohort Post-neonatal E:(ter:rlzinca(l);azar ds Confounders: sex, gestational period, season ﬁla;;s;;csi?;mi ;f;caezt ?)Ssiicel?:)l(l”rl‘v[
Son et al., 2011 225 post-neonatal mortality: all causes TSP, PMyo, PM1q.25, propor . of birth, maternal age and educational level, R g-ierm exp
2004-2007. Seoul 4 modeling with . and infant mortality from all causes
[27] deaths. and respiratory causes; and PM;5 . and heat index. .
Korea. time-dependent i . . or respiratory causes for
SIDS X Stratified by birth weight (normal versus low). R S
covariates normal-birth-weight infants.
The spatial excess risk of infant
Padilla et al., Ecological- Spatial . . Generalized Additive ~ Confounders: neighborhood socioeconomic mortality was not explained by
2013 [24] 2002-2009, France. 1200 infant deaths. Infant Mortality NO, models deprivation. spatial variation of NO,

concentrations.
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Auteurs i:}:‘:{igfs‘gn’ Period Population Size Outcomes Pollutants Statistical Methods Confounders/Stratification Main Findings
Birth and death cohort . L - - .
Arceo et al., 2016 1997-2006, Mexico . Infant and Neonatal PM;jg, SO,, CO, and Regression model: Cor}founders thermal inversion (instrumental StétIStlcally slgr{lflcantkmcreasedA rate
. A 24,691 infant deaths. X ) variables), temperature and weather in infant mortality for increases in
[10] City Metropolitan Mortality O3 Fixed effect model . s
. conditions, and municipality-effects. PM; exposure.
Area and Guadalajara.
Case-crossover Infant, neonatal Statically significant association
Yorifuji et al.,, 2016 ~ 2002-2013, Tokyo . Mortal{ty—Post-neonatal PM;5; Conditional logistic Cor'\founders:' daily number of 1nﬂ1{e nza between short-term exposure to PM
N 2086 infant deaths. mortality: all causes . patients; ambient temperature, relative .
[26] Metropolitan PMy.,5; SPM regression L R and infant and post-neonatal
and by separated humidity, holidays. .
Government. mortality.
cause
Results suggest that spatial excess
Padilla etal., 2016  Ecological Spatial 2464 infant deaths Infant and neonatal NO Generalized Additive ~ Confounders: None z\l]sal; ;)afrmefla n:;:nlda;zc()ins tal mortality
[23] 2002-2009, France. ) mortality 2 Models Stratified by times-period. >argely expainea by
socioeconomic deprivation index and
NO; concentrations.
Cohort Confounders: None
Heft-Neal etal, 2001-2015, 30 About 70,339 infant . Fixed-effects Stratified by t“‘?e pgrlod 'and wlealth leve'l. . Strong and linear association between
2018 . Infant Mortality PM; 5 . Accounted for time-invariant differences in air X .
Sub-Saharan African deaths. regression . . infant mortality with PM; 5 exposure.
[32] . pollution and mortality across
Countries. .
locations-cluster effect and for year-effect.
Litchfield et al Statically significant association
2018 v Case-crossover. 211 cases of SIDS SIDS PM;g, SO,, CO, O3, Conditional Poisson Confounders: temperature; holidays between previous day pollutant
2] 1996-2006, UK. : NO,, and NO regression Stratified by levels of household wealth. concentration (NO, and PM;()
and SIDS.
Ecological Time series Confounders: Time trend, seasonalit; Results suggest an increase in the
Gouveia et al., 1997-2005, Mexico city, Infants and children . .. R y L Y 88 .
. . . Generalized Additive  holidays, temperature; humidity. percentage of the risk of death due to
2018 Santiago Chile, Sao 8762 Infant deaths. mortality due to PM;y and O3 s . . .
. Models Stratified by warm/cold season; and for respiratory diseases in infants for
[12] Paulo, respiratory causes

and Rio de Janeiro.

each city.

10pg/m-3 increase in PMy.

Legends: PM: Particulate Matter; PMj: particulate matter with an aerodynamic diameter up to 10 um; PM, 5: particulate matter with an aerodynamic diameter up to 2.5 um; TSP: total
suspended particulate; SPM: suspended particulate matter NO: nitrogen monoxide; NO,: nitrogen dioxide; O3: Ozone, SO,: sulfure dioxide; CO: Carbon monoxide; SIDS: Sudden infant
death syndrome.
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3.1.3. Cases Definition and Data Sources

While many studies investigated only the overall group of infant mortality [9,10,15,21,23-26,32],
post-neonatal [8,9,13,21,25-28], and neonatal death [9,10,15,21,23,25,26], others explored specific cause
of death, mainly by respiratory causes [8,10,12-16,18,21,25-27,31] and Sudden Infant Death Syndrome
(SIDS) [13,15,17,19,21,22,26,27]. Several studies stratified their analysis on an additional covariate.
In 2011, Scheers et al. [25] analyzed the risk of death among a subgroup of newborns according to
their birth weight (low birth weight versus normal birth weight) as well as the studies of Son et al. in
2011 [27] and Woodruff et al. in 2008 and 2006 [13,16]. Other authors stratified their analysis according
to birth term (preterm versus at term) [15]. The definition of infant mortality by causes was relatively
homogeneous across studies (see Table S1). Among studies investigating respiratory causes of death
or SIDS, all but four (which did not give any precision [10,17,19,21]) based their outcome definition on
the International Classification of Disease 9 and 10 (ICD 9-10). Databases were drawn mainly from
birth and death certificates as well as from institutes such as the Institute of National Health Statistics
or the Ministry of Health (see Table S1).

3.2. Air Pollution Exposure Assessment

In Table 2, the study’s results were structured by approaches that have been used to assess the level
of residential exposure. Table 3 describes the different definitions of exposure windows considered in
the 24 studies included in the systematic review.

3.2.1. Pollutants of Interest

Most studies investigated the effects of a single air pollutant, although a few looked at the
effects of multiple pollutants [13,15,19,20]. The most frequently analysed air pollutants were PM;,
PM; 5, NO,, CO, O3, NOy, and SO, [9,19-22,28-30], although others studied considered more specific
pollutants such as PMjg., 5 and TSP [27], PMy., 5 and SPM [26]. The number of air pollutants included
in studies to investigate the health consequences of exposure varied between 1 and 5: most analysed
the effects of PM;g, NO,, CO, O3, and SO, [9,19-22,28-30], though others considered only PM;g, CO,
O3, and SO, [10,13] or PM;,, CO, O3, and NO, [15]. Few studies focused on the effects of certain
pollutants, namely PM;j, PM; 5, and CO [14], or indeed the effects of just two pollutants, PM;y and
O3 [8,12,18] or NO, and CO [17]. Five studies considered a single pollutant, namely PM, 5 [16,32],
PMyg [25], or NO, [23,24].

3.2.2. Exposure Definition

All studies considered air pollution data from monitoring stations, except four studies [23-25,32]
which based their measures of exposure on a modelling approach (Table 2). Whichever methodology
was applied to characterize residential exposure, most often it was on a daily basis (except in four
studies [21,23,24,32], which examined annual indicators). For all air pollutants (PM;jo, PM, 5, CO, NO,,
and SO,), the authors most often used the daily (24 h) average, except in two studies which selected
the maximum daily concentrations observed as the indicator of exposure [10,17]. Daily average O3
exposure was used by all studies bar three [8,12,18], which estimated the daily maximum of the
eight-hour moving average as the exposure indicator.

The description of all studies included in the systematic review (n = 24) by approaches used to
assess the residential exposure measures and Level exposure assigned to the population is shown
in Table 3.
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Table 2. Summary of approaches used to assess the residential exposure measures.

Level of Exposure Assigned to

Approach g Database/Model Used Pollutants Indicators Data Sources of Air Pollution  Authors, Date
the Population
Monitoring station-based approach
27 monitoring stations ;
distributed evenly TSP, PMug, PMio.25, 24 h averages Depar@ent of Environment, Son et al., 2010 [27]
and PM, 5 Republic of Korea
throughout Seoul.
Country-specific level 27 monitoring stations
distributed evenly PM;g, SO,, CO, O3, 24 h averages for PMjg, SO,, Depar@ent of Environment, Son et al,, 2010 [25]
NO, NO, exposure Republic of Korea
throughout Seoul.
The entire El-Paso/Ciudad Juarez Nine Fixed monitoring stations Ciudad Juarez monitorin Romieu et al
; distributed throughout PM;g, O3 24 h average for PM10 & v
airshed level . network system 2004 [18]
Ciudad Juarez.
Aver'zige.fron'tl il,l A minimum of two monitoring
monitoring stations i i
sites for each city, exceptfor 6 0 0, . United Kingdom Air Quality .
Middlesbrough and Daily average Hajat et al., 2007 [9]
. NO,, and NO Network
Newcastle, where only one site
City level was used.
Six air quality monitoring PMy, SO,, CO, O3, . Taiwan Environmental
stations in Taipei city. and NO, Daily average Protection Administration Yang etal., 2006 [29]
s . S Taiwan Environmental .
Six ar ql.lahty mqmtormg PMy, 8O, CO, Os, Daily average Protection Administration, a Tsai et al., 2006
stations in Kaohsiung city. and NO, [30]
central governmental agency
. UK air quality archive
Post-code level lgc;;a;zgsaicrf(:;sef\(f)\/izgg ostal PMiy, SO, CO, O3, Daily average concentrations managed by the Department Litchfield et al,
. . NO,, NOy, NO y & for the Environment, Food and 2018 [22]
Midlands region. .
Rural Affairs
A sglectlon of mon1tor1ng PMio, PM; 5, SO,, 24 h average measured once United States Environmental Woodruff et al.,
stations most likely to reflect every 6 days for PMyg .
. CO, and O3 Protection Agency 2008 [13]
population exposure. and PM; 5
Ambient levels in their county . .
No information available. PMjo, PMy5,and CO  during their first 2 months United 'States Environmental Darrow etal,
County level of life Protection Agency 2006 [14]
A f isti The United States
wverage from existing - .
Monitoring stations PM;, SO,, SOy, CO, Environmental Protection

All monitoring station.

and non-sulfate PMyg

Annual average

Agency’s Aeromatic
Information and
Retrieval System

Lipfert et al., 2000 [21]

One station per municipality or

24 h daily mean for

Metropolitan Area Monitoring

Carbajal-Arroyo et al.,

Municipality level average if more than one PMy, O3 PM, exposure Network System. 2011 [8]
station.
Monitoring stations existing
. When data were available from S0O,, CO, O3, PM National Air Pollution
level ( 2, CO, O3, PMy, o
City leve >1 monitoring site, they PM, 5, and NO, 24haverage Surveillance system Dales etal,, 2004 [19]

were averaged).

10 of 24
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Table 2. Cont.

11 of 24

Level of Exposure Assigned to

Approach g Database/Model Used Pollutants Indicators Data Sources of Air Pollution  Authors, Date
the Population
Monitoring stations located PM;j, SO,, CO, O3, . The Sao Paulo State .
within the city. and NO, Daily mean levels Sanitary Agency Lin etal., 2004 [20]
Secretary of Environment and
All monitoring stations in each Daily 24 h mean average of Natural R.e sources in MeXIC.O'
. . ) Local environmental agencies .
city (reflecting background air PM;g R 2. Gouveia et al.,
) ‘ PMy, 03 . . . which report to the Ministry of
pollution level, not influenced Daily 8 h maximum moving - . . 2018 [12]
by local sources) average for 0 Environment in Brazil. Local
y . 3 governmental networks
in Chile.
The nearest monitor within 5
miles of the mother’s residence
.. . . . L Woodruff et al.,
Individual level lues were used to identify the PM; 5 24 h average every 6 days California Air Resources Board 2006 [16]
nearest monitor within 5 miles of .
each mother’s residence.
The nearest best air monitoring
station W}thm 10 miles o.f the Hourly measurements for NOy, South Coast Air Q}lah.ty
mother zip code and taking Management monitoring
. L PMy, CO, O3, CO, and O3 R . O .
into account 3 additional station, from electronic files Ritz et al., 2006 [15]
. and NO, 24 h average measurements -
. parameters: distance, assembled by the California
Zip code level . . for PMyg .
eographic features, and wind Department of Health Services
Nearest &
o . flow patterns.
monitoring station
The monitoring station closest . . . L Klonoff-Cohen et al.,
to the infant address/zip code. CO and NO, Maximum daily 1 h average California Air Resources Board 2005 [17]
48 of the 56 municipalities in Maximum daily 8 h average for
PSR s CO and average over the week
Mexico cities, located within 15 Maximum daily 24 h average
L km of a station Measures of Y & Automatic Network of Arceo et al., 2016
Municipality level . K PMy, SO,, CO, O3 for PMy and average over . L.
pollution constructed using the the week Atmospheric Monitoring [10]
inverse of the distance to
. ) Weekly averages for SO, and
nearby stations as weight. ‘
or O3
Monitoring 'statlon, named Bureau of Environment of the o
Wards level general station, located about PM,5; Daily concentration Tokvo Metropolitan Yorifuji et al.,
sieve 12 km from the central point of PMy.; 5; SPM ¥ conce ons OXy0 VIetropo 2016 [26]
Government
the 23 wards.
Modeling based approaches
Land use regression model and
s kriging interpolation model . . Network of automatic Scheers et al.,
Municipality level using land cover data obtained PMio Daily concentrations monitoring sites 2011 [25]
from satellite images.
Modeling approaches Atmospheric Dispersion Local air quality Padilla et al.,
Census block level Modeling System. NO, Annual average monitoring networks 2013 [24], 2016 [23]
Atmospheric Composition
Country level Satellite based measurements. ~ PMj 5 Annual average Analysis Group at Heft-Neal et al, 2018

Dalhousie University

[32]
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Table 3. Definition and assessment of window of exposure.

12 of 24

Windows of Exposure Pollutants Authors
Short term exposure
PMjg, O3 Carbajal-Arroyo et al., 2011 [8]
PM,; 5; PMy., 5, SPM Yorifuji et al., 2016 [26]
The day of the death (Lag 0) PMjp Scheers et al., 2011 [25]

PMlO/ SOz, CO, 03, and NOz

Lin et al., 2004 [20]

PMlO/ SOz, CO, 03, and N02

Ha et al., 2003 [31]

Daily exposure

PMyg, SO,, CO, O3, NO, NO Litchfield et al., 2018 [22]
The day before death (Lag 1) PMyg Romieu et al., 2004 [18]
PMyg, O3 Carbajal-Arroyo et al., 2011 [8]
PM;g, O3 Carbajal-Arroyo et al., 2011 (11) [8]
Two days before death (Lag 2) PMyg, SO,, CO, O3, NO, NO Litchfield et al., 2018 [22]
PMyp Romieu et al., 2004 [18]
Three days before death (Lag3) PMjg, SO,, CO, O3, NO, NO Litchfield et al., 2018 [22]
Four days before death (Lag4) PMy, SO,, CO, O3, NO, NO Litchfield et al., 2018 [22]
Five days before death (Lag5) PMjy, SO,, CO, O3, NO, NO Litchfield et al., 2018 [22]
Six days before death (Lag6) PMjg, SO,, CO, O3, NO, NO Litchfield et al., 2018 [22]

Over 2 days before death (Lag 0-2)

Cumulative Exposure

PMlO/ SOQ, CO, 03, NOZ, and NO

Hajat et al., 2007 [9]

PMlO/ 502, CO, 03, and N02

Yang et al., 2006 [29]

PMlo, SOz, CO, 03, and NOZ

Tsai et al., 2006 [30]

PMyg Romieu et al., 2004 [18]
PMyg, SO,, CO, O3, NO, NO Litchfield et al., 2018 [22]
PMjg O3 Gouveia et al., 2018 [12]
Over 3 days before the death (Lag 0-3) S0O,, CO, O3, PMyy, PM; 5, NO, Dales et al., 2004 [19]
PMyg Romieu et al., 2004 [18]
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Table 3. Cont.

13 of 24

Windows of Exposure Pollutants Authors
PMjg, O3 Carbajal-Arroyo et al., 2011 [8]
CO and NO, Klonoff-Cohen et al., 2005 [17]
Over 4 days before the death (Lag 0-4) PM, 5; PM7., 5; SPM Yorifuji et al., 2016 [26]
Over 6 days before the death (Lag 0-6) PMjy, SO,, CO, O3, NO, NO Litchfield et al., 2018 [22]
Over 7 days before the death (Lag0-7) CO and NO, Klonoff-Cohen et al., 2005 [17]

Over two to seven days before
death (Lag 2-7)

PMlO/ SOz, CO, 03, and N02

Lin et al., 2004 [20]

Long term exposure

Cumulative Exposure

Weekly exposure PMj, SO,, CO, O3 Arceo et al., 2016 [10]
2 weeks before death PM;, CO, O3, and NO, Ritz et al., 2006 [15]
PMy, CO, O3, and NO, Ritz et al., 2006 [15]
1 month before death (or 30 days)
CO and NO, Klonoff-Cohen et al., 2005 [17]
PMi, PM; 5, SO,, CO, and O3 Woodruff et al., 2008 [13]
The first 2 months of life
PM;p, PM; 5, and CO Darrow et al., 2006 [14]
2 months before death PMj, CO, O3, and NO, Ritz et al., 2006 [15]
6 months before death PM;y, CO, O3, and NO, Ritz et al., 2006 [15]
PM, 5 Woodruff et al., 2006 [16]
PM; 5 Heft-Neal et al., 2018 [32]
Between birth and the death TSP, PM;g, PMg.25, and PMj 5 Son et al., 2010 [27]
CO and NO, Klonoff-Cohen et al., 2005 [17]

By trimester of pregnancy

TSP, PM1, PM0.05, and PMy 5

Son et al., 2010 [27]

During the 9 months of pregnancy

TSP, PMyg, PMyp.2 5, and PM; 5

Son et al., 2010 [27]

PM;5

Heft-Neal et al., 2018 [32]

No specific window of exposure

PM;g, SO,, SO4 (2, CO, and non-sulfate

Lipfert et al., 2000 [21]

NO,

Padilla et al., 2013 [24], 2016 [23]
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3.2.3. Window of Exposure

Table 3 revealed that both short- and long-term exposure to air pollution were used to investigate
the relationship between residential exposure and infant mortality; short-term exposures were the
most commonly explored exposure windows using various indicators that include daily exposure and
cumulative exposure. Moreover, some studies chose not to focus on a particular critical window of
exposure, instead measuring annual average pollutant concentrations at dwelling [21,23,24].

3.3. Meta Analysis

3.3.1. Main Characteristics

Our meta-analysis was conducted for 6 combinations between one air pollutant and one
infant death when at least four studies were available for the same combination. More precisely,
the 6 combinations were post-neonatal death all-causes related with (1) NO, exposure and (2) PM;g
exposure, post-neonatal death due to respiratory causes related with (3) PM; 5 and with (4) PM;g
exposure, as well as sudden infant death syndrome (SIDS) related with (5) PM; 5 and with (6) PM1g
exposure. All the measures of the association of the studies included in the meta-analysis are detailed
in Table S2.

Where possible, stratified analyses have been performed in order to differentiate the health effect
related to short- and long-term and daily or cumulative exposure. In all, 12 meta-analyses were
implemented: of these, heterogeneity (Q-test) tests indicated eight meta-analyses with high I? values
(above or close to 50%) for which random effects models were applied (for the other four combinations,
fixed models were used). Heterogeneity varied from 0% to 96.5%, indicating that measurement
methods, sample properties, and characteristics varied both among and within different studies.

3.3.2. Specific Causes Death

Post-Neonatal Death All-Causes

As shown in the Figure 2, we found no significant increase of pooled-OR for exposure to NO,,
while it clearly became significant with short-term PM;y exposure: pooled-OR = 1.013, 95% CI
(1.002, 1.025).

Respiratory Post-Neonatal Death

As shown in the Figure 3, the long-term exposure of PM;5 on post-neonatal death due to
respiratory causes was not statistically significant. While the overall analysis of PM;g exposure did
reveal a significant increase in pooled-risk (pooled-OR = 1.082, 95% CI (1.005, 1.165)), the stratified
analysis indicated that it only remained significant among studies considering long-term windows of
exposure: OR = 1.134, 95% CI (1.011, 1.271).

Sudden Infant Death Syndrome

Regarding sudden infant death syndrome, 2 meta-analyses, with PMg and PM, 5, were performed.
As shown in the Figure 4, we found significant pooled-OR when considering PM;( exposure (pooled-OR
= 1.045, 95% CI (1.01, 1.08) per 10 pg/m?); although when we kept only the three studies exploring the
long term PMj effect, the level of heterogeneity fell to 0%, yet the meta-risk was not significant at all:
pooled-OR = 1.029, 95% CI (0.988, 1.072). In addition, the pooled-risk between SIDS and PM, 5 was not
statistically significant.
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Figure 2. Forest plots for combinations of post-neonatal death all-causes and pollutant. The size of each square represents the weight that contributes to the combined
effect, respectively for: (A) NO,; (B) PMyjg.
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Figure 3. Forest plots for combinations of post-neonatal death Respiratory-causes and pollutant. The size of each square represents the weight that contributes to the
combined effect, respectively for: (A) Long-term PMj 5; (B) long- and short-term PM;; (C) long-term PM;.
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Figure 4. Forest plots for combinations of sudden infant death syndrome and pollutant. The size of each square represents the weight that contributes to the combined

effect, respectively for: (A) Long- and short-term PM; 5; (B) long- and short-term PMyj.
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3.3.3. Publication Bias

Funnel plot and Begg’s rank tests were applied to determine whether there was publication bias.
All funnel plots are in Figure S1. The results summarized in Table 4 present a low probability of
publication bias, reporting a p-value for Begg’s rank test over 0.05, except for respiratory post-neonatal
deaths for which borderline p-values were obtained.

Table 4. Begg's test on the effect of air pollutants on infant mortality.

Birth Outcomes Pollutants N * p-Value **
1 ~1
POST-NEONATAL DEATH NO; long term exposure >
ALL-CAUSES PMjj long term exposure 9 0.23
: PM; 5 long-term exposure 4 0.042 ***
RESPIRATORY PMjg long- and short-term exposure 8 0.32
POST-NEONATAL DEATH PMj long-term exposure 4 0.042 ***
SUDDEN INFANT DEATH PM,; 5 long- and short-term exposure 4 0.49
SYNDROME PMjg long- and short-term exposure 5 0.62

* number of studies. **: p-value resulting from the Begg’s rank test, *** significant p-value (<0.05).

3.3.4. Sensitivity Analysis

Sensitivity analyses were performed to estimate the stability of our results by recalculating the
pooled effects estimates after omitting one study each time (Table S3). For three meta analyses, we did
not perform it due to too few numbers of studies. We found that the effect estimate of each 10 pg/m3
increase in NO, and PMjj on post-neonatal death showed no significant change by removing one
single study, suggesting that the combined results were relatively stable and reliable. Small variations
were visible for respiratory post neonatal death and sudden death syndrome related to PM10 long-
and short-term exposure; while point combined estimates were rather similar, the precision level of the
confidence interval weakly decreased, leading to insignificant results with a lower limit of the 95%
confidence interval less than but close to 1.

4. Discussion

4.1. Main Finding

Our systematic review has revealed that most studies conclude that there is an increased risk of
infant death as a result of exposure to air pollution including PM;y, PM; 5, and NO;. More precisely,
our meta-analysis estimated a significant excess risk of post-neonatal mortality all-causes for short-term
only exposure to PMjg. We have also shown that the risk of respiratory post-neonatal death increased
with a 10 pg/m3 increase in PMy for long-term exposure specifically, as did the risk of SIDS with no
specific gestational windows of exposure. In contrast, no significant excess risk of infant death was
found regardless of pollutant or gestational window of exposure (including short- or long-term).

Taking into account the characteristics of the different studies (design, adjustment, definition of
the outcomes....) (see S1, Table 54), these did not change the meta-risks estimated with the classical
meta-analysis approach (data not shown).

These results could be partially explained by methodological limitations inherent to (i) definition
of infant adverse outcome, (ii) exposure assessment and (iii) critical windows of exposure, which
could affect the strength of the association. In addition, several inaccuracies and biases inherent to
meta-analysis methods may bias cross-study comparisons and any conclusions drawn from them.

4.2. Outcome Data: Case Selection

We identified several pathways through which outcome data can lead to a bias in the measures of
association. Firstly, outcome definition itself could constitute a source of uncertainty. The definitions
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of infant mortality used were (surprisingly) heterogeneous between studies, rendering comparisons
difficult. For instance, although most of the studies have considered all deaths occurring among infants
aged <1 year, few excluded neonatal mortality (death < 28 days) in order to consider the deaths most
plausibly associated with air pollution [13,28] in terms of biological mechanisms. In addition, findings
may be distorted as a result of some studies that were excluded, for instance, accidental [8,29-31] or
external [15]. With regard to the definition of SID, two studies (26, 29) based their case definition on
autopsies while other studies based the definition of SIDS cases on all unexplained deaths [21].

Another source of limitation lies in the health databases analyzed, which led the authors to collect
different newborn and maternal characteristics. For instance, several studies investigated air pollution
effects on infant death by cause [10,21,23,24], whereas others restricted their analysis to specific cause
of death [12] or indeed considered all-causes of death due to lack of precise information [32].

Also, many studies ignored well-known risk factors for infant death such as gestational age,
birth weight, and maternal age [9,10,12,18,20,22-26,32]. Furthermore, several other studies considered
birth weight and/or gestational age as potential modifiers of the association between infant death and
air pollution exposure. In order to do this, these studies stratified their analysis on birth weight by
considering the infant death effect of air pollution exposure separately among the low and normal
birth weight [21,27], or among preterm and normal term birth [25]. Two other studies combined birth
weight and gestational age including only births beyond 44 weeks of gestation [13] or between weeks
37 and 44 [27].

4.3. Exposure Assessment

Different approaches for exposure assessment were implemented, and this may induce
misclassification of exposure. Most of the studies used air pollution data from monitoring stations as a
proxy for individual exposure. The main advantages of these databases relate to their easy accessibility
and availability. However, their use presents several limitations, particularly when the objective is to
quantify individual levels of exposure and investigate the health consequences of exposure.

The first of these limitations is related to the method used to convert concentration measures
from monitoring stations to individual exposure: most of the studies either averaged air pollution
concentrations from all monitoring stations covering the study area or selected a sub-sample of
monitoring stations—just one, perhaps the one the closest to the dwelling [9,18,21,22,27-30]—while in
others, no detail was given atall [8,12-14,19,20]. Many studies developed a methodology for identifying
the nearest monitoring stations, then estimated the exposure level of the pregnant women [10,15-17,26].
For instance, one study defined the closest monitors at the zip/post code scale [17], whereas another
quantified the maximum distance from the maternal dwelling to the monitoring station [16]. One study
extended this procedure by using the inverse of the distance to nearby stations to weight measurement
of the pollution estimate for each of the 56 municipalities in Mexico City [10]. In 2016, Yorifuji et al.
considered air pollution data measured at a monitoring station located about 12 km from the central
point of the ward’s spatial scale [26]. Another study combined identification of the nearest air
monitoring station with the geographic features and wind flow patterns of the zip/post code at place
of birth [15] (see Table 2). In addition, both the number of monitoring stations and the size of the
study area vary between studies and this may increase the level of heterogeneity of air pollution
measurement between studies. To be precise, the number of monitoring stations varied between a
minimum of 5 [18] and a maximum of 27 [27,28]. There is also a risk that a small number of monitoring
stations covering a large area may limit spatial representativeness of exposure, which may in turn
introduce bias in assessment of the residential exposure of pregnant women. A further limitation
comes from missing residential postal addresses; in such cases, the spatial unit chosen by the authors
ranged from post-code level [22] to country level [27,28]. Misclassifications of exposure may result
from the spatial unit used, with the largest spatial scale being less appropriate for the capture of fine
spatial dispersion of air pollution concentrations.
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Although data from monitoring stations is based on both national air quality requirements and
guidelines and legislation that are compliant with approved methods [33], environmental modeling
approaches now provide a higher level of spatial precision in exposure estimates than approaches
based on routine monitoring station data. In our systematic review, two French studies used
atmospheric dispersion modelling to estimate annual average NO; at a census block level (9, 4),
which was recognized as appropriate for the capture of spatial variabilities of air pollution. In 2011,
Scheers et al. used a land use regression model to interpolate PM;y concentrations at a municipality
level [25] (see Table 2). Only one study used satellite-based measurements of annual average PM2.5
concentrations at country level [32] (see Table 3). Environmental modelling is relatively cumbersome,
labour-intensive, and computer-intensive, and also requires extensive data input; however, it is still
held up as the gold standard for environmental and health impact assessment.

Lastly, regardless of which approach is chosen, exposure misclassification can also occur following
changes in residential place during pregnancy. In general, studies are unable to take this limitation
into account due to a lack of information about the residential mobility of pregnant women. However,
residential mobility among pregnant women is not insignificant; in 2012, Bell et al. showed that the
percentage of women who moved house during pregnancy ranged from 9% to 32%, with a median of
20% [34]. In addition to this residential mobility, it is even more difficult to estimate the daily mobility
of pregnant women across the study area. No study included in the systematic review considered this
important parameter, although some studies did suggest that pregnant women’s everyday mobility
across the city would increase daily exposure [35].

The choice of pollutant used to describe exposure to air pollution is also crucial. Among the
studies of our systematic review, few estimated possible multi-pollutant health effects [13,15,19,20].
Yet the fact that the health consequences of pollutant exposure does not result from a single pollutant is
already well established; every day, everywhere, we are exposed to a cocktail of pollutants (including
both indoor and outdoor air pollution) and new methodological developments are required in order to
consider this issue and overcome method limitations.

4.4. Critical Windows of Exposure

Exposure misclassifications also depend on the definition of window of exposure. In our systematic
review, two main approaches define the window of exposure in order to investigate the relationship
between residential exposure and infant deaths: (i) short-term exposure (<2 weeks) and (ii) long-term
exposure (>2 weeks).

Even if we separately analyzed the effects of short- or long-term exposure, exposure
heterogeneity may result from the various indicators implemented to measure the level of exposure.
For instance, different indicators defining the daily exposure were identified: the day of the death
(Lag0) [8,20,25,26,31], the day before death (Lagl) [8,18,22], or longer lags such as from lag 1 to lag
3[18,22,25] or from lag 1 to lag 6 [22] (see Table 3). The studies that investigated short-term cumulative
exposure also examined different windows of exposure including over 2 days (Lag0-2) [9,18,22,29,30],
3 days (Lag0-3) [8,12,17-19,25], 4 days (Lag0—4) [26], 6 days (Lag 0-6) [22], or over 7 days before death
(Lag 0-7) [17]. More specific windows of exposure were also examined by Lin et al.; they considered
exposure from two to seven days before death (Lag 2-7) [20]. Only one study focused on longer periods
of exposure: 2 weeks before death [15] (see Table 3).

Regarding long-term exposure, two types of windows of exposure were identified (i) exposure
during pregnancy and (ii) exposure of the newborn. In both cases, their exposure measures were based
on cumulative exposure during a given period. During pregnancy, the studies measured exposure by
trimester or during the entire period of pregnancy [27,32]. After birth, different windows of exposure
were investigated including: the first month of life [15,17], the first 2 months before death [13-15],
or the 6 months before death [15]. Larger windows of exposure were also examined—for instance,
exposure during the first year of a newborn’s life [16,17,27,32] (see Table 3). Several other studies
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did not focus on a particular window of exposure and measured the annual average of pollutant
concentrations at the residential place as a proxy of newborn exposure [21,23,24] (see Table 3).

4.5. Assessment of the Relation between Air Ambient Pollution and Infant Mortality

Our findings have to be interpreted with caution due to weaknesses that could affect the strength
of the associations and then the formulation of accurate conclusions. In particular, the various
confounding factors and the different sample size may lead to difficult between studies comparisons.
Indeed, several studies adjusted for only meteorological characteristics (e.g., temperature, humidity,
and seasonality) [28-31]. Some studies did not use any covariates [23,24,32], while others adjusted
other studies adjusted on both baby and mother characteristics (maternal age, education, and marital
status) and less often, on neighborhood characteristics, such as neighborhood socio-economic
status [13,14,16,17,21,27].

Because of the lack of available information on dietary factors (such as folic acid supplementation,
folic acid and vitamin intake during pregnancy), no study has adjusted risk estimates for these variables.
An absence of systematic adjustment on common known confounders may affect the measure of
association and thus, the comparison of all the risk estimates.

In addition, as any epidemiological study, the sample size may affect the statistical power:
the higher the sample size, the higher the statistical power. Thus, in our study, we included studies
with small sample sizes that provided imprecise estimates [36].

The features of the studies described above—such as study population, study design, sample size,
the classification and definition of infant death, exposure assessment, and confounding factors—could
all, independently or in combination, affect the quality of each study itself and, also, their comparison
in our systematic review.

4.6. Strengths and Limitations

In addition to the limitations listed above, both our systematic review and our meta-analysis,
like all studies, present their own strengths and limitations. Firstly, our work may suffer from study
selection biases. Non-English publications of relevant articles may have been ignored. In addition,
we cannot rule out the possibility that our systematic review, like most, could be impacted by publication
bias. Indeed, unpublished results (including, in particular, results not statistically significant and grey
literature, which is not available on open sources) may distort our meta-analysis findings towards the
statistical significance of the risk estimates.

Also, the global level of air pollution in each country was not taken into account in our studies
comparison, while we know that differences exist between countries. Thus, the health effect of a
10 pg/m? increase in a pollutant could be measured in an area with a globally low level of air pollution
or in an area with a high level. However, we had too few studies in our systematic review to stratify
our analysis on the global level of air pollution. For similar reasons, it was not possible to perform a
dose-response function analysis due to the low number of studies and the heterogeneity between them.

However, our review could form the basis for future research. Our systematic review was based
on a large number of original studies and our meta-analysis presented six combinations of air pollutants
and outcomes. We also detailed several sources of variability which may partially explain the observed
measures of association. Future studies could be based on this analysis of limitations of the current
body of research, which may provide inspiration for research agenda improvements.

4.7. Public Health Implication

Scientific works have been providing evidence of the health consequences of pollutants for a
long time now. An increasing number of studies are now addressing the question of which policy
strategies are needed to reduce exposure to environmental pollutants very early in life, before birth
and sometimes also a few months before conception. Alongside this, attention on health impact
assessment of air pollution has been on the rise in recent decades. The WHO recommends its use for
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both quantitative estimation of the current health effects attributable to air pollution and as a source of
further evidence for public health action. According to the WHO, “health impact assessment (HIA) is a
practical approach used to judge the potential health effects of a policy, programme or project on a population,
particularly on vulnerable or disadvantaged groups” [37]. HIAs estimate the expected public health impact
in the event that air pollution levels change to a given extent [38]. A crucial indicator required for
quantification of the health burden of air pollution is the dose-response function, which is obtained
from meta-analysis. This function indicates the expected change, on average, in a given outcome per
unit change of pollutant. Our meta-analysis results provide pooled-risk for 6 combinations of air
pollutants and infant death, which may provide the first step of the HIA. Because an HIA can estimate
the human health impacts of current policy or implemented actions, it can become a useful tool for
both policymakers and planners.
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