Diameter-selective non-covalent functionalization of carbon nanotubes with porphyrin monomers.
Résumé
We report on the spontaneous noncovalent functionalization of carbon nanotubes with hydropho-bic porphyrin molecules in micellar aqueous solution. By monitoring the species concentrations with optical spectroscopies, we can follow the kinetics of the reaction and study its thermodynamical equilibrium as a function of the reagent concentrations. We show that the reaction is well accounted for by a cooperative Hill equation, reaching a molecular coverage close to a compact monolayer for a porphyrin concentration larger than a diameter-specific threshold concentration. The equilibrium constant is measured for 16 nanotube chiral species. The Gibbs energy of the reaction (of the order of-40 kJ/mol) and its evolution with the nanotube diameter is consistent with theoretical calculations of the binding energy. This thermodynamical study shows a strong preferential binding of TPP molecules to larger diameter nanotubes. This original curvature selectivity can be used to induce diameter selective species enrichment.
Domaines
Autre [cond-mat.other]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...