On the excess of average squared error for data-driven bandwidths in nonparametric trend estimation
Sur l’excès de la moyenne quadratique des erreurs associées à des fenêtres adaptatives dans l’estimation non-paramétrique de la tendance
Résumé
We consider the problem of the optimal selection of the smoothing parameter $h$ in kernel estimation of a trend in nonparametric regression models with strictly stationary errors. We suppose that the errors are stochastic volatility sequences. Three types of volatility sequences are studied : the log-normal volatility, the Gamma volatility and the log-linear volatility with Bernoulli innovations. We take the weighted average squared error (ASE) as the global measure of performance of the trend estimation using $h$ and we study two classical criteria for selecting $h$ from the data, namely the adjusted generalized cross validation and Mallows-type criteria. We establish the asymptotic distribution of the gap between the ASE evaluated at one of these selectors and the smallest possible ASE. A Monte-Carlo simulation for a log-normal stochastic volatility model illustrates that this asymptotic approximation can be accurate even for small sample size
Domaines
Statistiques [math.ST]Origine | Fichiers produits par l'(les) auteur(s) |
---|