Clinical Relevance of Pharmacist Intervention: Development of a Named Entity Recognition Model on Unstructured Comments - IMAG
Article Dans Une Revue Studies in Health Technology and Informatics Année : 2021

Clinical Relevance of Pharmacist Intervention: Development of a Named Entity Recognition Model on Unstructured Comments

Résumé

We developed a clinical named entity recognition model to predict clinical relevance of pharmacist interventions (PIs) by identifying and labelling expressions from unstructured comments of PIs. Three labels, drug, kidney and dosage, had a great inter-annotator agreement (>60%) and could be used as reference labelization. These labels also showed a high precision (>70%) and a variable recall (50–90 %).
Fichier principal
Vignette du fichier
SHTI-281-SHTI210210.pdf (117.73 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04813119 , version 1 (15-12-2024)

Licence

Identifiants

Citer

Justine Clarenne, Sonia Priou, Aymeric Alixe, Olivier Martin, Céline Mongaret, et al.. Clinical Relevance of Pharmacist Intervention: Development of a Named Entity Recognition Model on Unstructured Comments. Studies in Health Technology and Informatics, 2021, Studies in Health Technology and Informatics, 281, ⟨10.3233/SHTI210210⟩. ⟨hal-04813119⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More