Exposé Bourbaki 1121 : Nœuds, mouvements de Reidemeister et algorithmes (d'après Lackenby) - AGPIG
Article Dans Une Revue Asterisque Année : 2019

Exposé Bourbaki 1121 : Nœuds, mouvements de Reidemeister et algorithmes (d'après Lackenby)

Résumé

Un nœud est souvent représenté par un diagramme de nœud, c'est-à-dire une projection sur deux dimensions, où l'on indique à chaque croisement lequel des deux brins passe au-dessus de l'autre. Deux diagrammes représentent alors le même nœud si et seulement si ils peuvent être reliés par une série de mouvements locaux, appelés mouvements de Reidemeister. Dans cet exposé, nous présenterons un résultat de Lackenby montrant que, partant d'un diagramme à c croisements du nœud trivial, un nombre polynomial en c de tels mouvements suffit pour arriver au diagramme trivial. La preuve s'appuie sur la théorie des surfaces normales et les travaux de Dynnikov sur les présentations par arcs. En corollaire, cela fournit un algorithme (exponentiel) pour reconnaître les nœuds triviaux, et nous en profiterons pour discuter de quelques problèmes algorithmiques autour des nœuds et des entrelacs.
Fichier principal
Vignette du fichier
Exp.pdf (626.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02367807 , version 1 (10-12-2020)

Identifiants

Citer

Arnaud de Mesmay. Exposé Bourbaki 1121 : Nœuds, mouvements de Reidemeister et algorithmes (d'après Lackenby). Asterisque, 2019, 407, pp.27-52. ⟨10.24033/ast.1059⟩. ⟨hal-02367807⟩
209 Consultations
268 Téléchargements

Altmetric

Partager

More