The Separation Theorem for Differential Interaction Nets - Institut Galilée Université Paris 13
Communication Dans Un Congrès Année : 2007

The Separation Theorem for Differential Interaction Nets

Résumé

Differential interaction nets (DIN) have been introduced by Thomas Ehrhard and Laurent Regnier as an extension of linear logic proof-nets. We prove that DIN enjoy an internal separation property: given two different normal nets, there exists a dual net separating them, in analogy with Böhm’s theorem for the λ− calculus. Our result implies in particular the faithfulness of every non-trivial denotational model of DIN (such as Ehrhard’s finiteness spaces). We also observe that internal separation does not hold for linear logic proof-nets: our work points out that this failure is due to the fundamental asymmetry of linear logic exponential modalities, which are instead completely symmetric in DIN.
Fichier principal
Vignette du fichier
sepdiffinal.pdf (262.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04670297 , version 1 (12-08-2024)

Licence

Identifiants

Citer

Damiano Mazza, Michele Pagani. The Separation Theorem for Differential Interaction Nets. 14th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2007), Oct 2007, Yerevan, Armenia. pp.393-407, ⟨10.1007/978-3-540-75560-9_29⟩. ⟨hal-04670297⟩
59 Consultations
18 Téléchargements

Altmetric

Partager

More